Advertisement
Review Article| Volume 6, ISSUE 4, P819-824, December 2014

Download started.

Ok

Sodium Current Disorders

Clinician’s View
Published:September 09, 2014DOI:https://doi.org/10.1016/j.ccep.2014.08.003

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cardiac Electrophysiology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bezzina C.
        • Veldkamp M.W.
        • van den Berg M.P.
        • et al.
        A single Na(+) channel mutation causing both long-QT and Brugada syndromes.
        Circ Res. 1999; 85: 1206-1213
        • Olson T.M.
        • Keating M.T.
        Mapping a cardiomyopathy locus to chromosome 3p22-p25.
        J Clin Invest. 1996; 97: 528-532
        • Giudicessi J.R.
        • Ackerman M.J.
        Determinants of incomplete penetrance and variable expressivity in heritable cardiac arrhythmia syndromes.
        Transl Res. 2013; 161: 1-14
        • Priori S.G.
        • Napolitano C.
        • Schwartz P.J.
        Low penetrance in the long-QT syndrome: clinical impact.
        Circulation. 1999; 99: 529-533
        • Watanabe H.
        • Darbar D.
        • Kaiser D.W.
        • et al.
        Mutations in sodium channel beta1- and beta2-subunits associated with atrial fibrillation.
        Circ Arrhythm Electrophysiol. 2009; 2: 268-275
        • McNair W.P.
        • Sinagra G.
        • Taylor M.R.
        • et al.
        SCN5A mutations associate with arrhythmic dilated cardiomyopathy and commonly localize to the voltage-sensing mechanism.
        J Am Coll Cardiol. 2011; 57: 2160-2168
        • Ellinor P.T.
        • Nam E.G.
        • Shea M.A.
        • et al.
        Cardiac sodium channel mutation in atrial fibrillation.
        Heart Rhythm. 2008; 5: 99-105
        • Darbar D.
        • Kannankeril P.J.
        • Donahue B.S.
        • et al.
        Cardiac sodium channel (SCN5A) variants associated with atrial fibrillation.
        Circulation. 2008; 117: 1927-1935
        • Remme C.A.
        Cardiac sodium channelopathy associated with SCN5A mutations: electrophysiological, molecular and genetic aspects.
        J Physiol. 2013; 591: 4099-4116
        • Probst V.
        • Wilde A.A.
        • Barc J.
        • et al.
        SCN5A mutations and the role of genetic background in the pathophysiology of Brugada syndrome.
        Circ Cardiovasc Genet. 2009; 2: 552-557
        • Bezzina C.R.
        • Barc J.
        • Mizusawa Y.
        • et al.
        Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death.
        Nat Genet. 2013; 45: 1044-1049
        • Adsit G.S.
        • Vaidyanathan R.
        • Galler C.M.
        • et al.
        Channelopathies from mutations in the cardiac sodium channel protein complex.
        J Mol Cell Cardiol. 2013; 61: 34-43
        • Crotti L.
        • Monti M.C.
        • Insolia R.
        • et al.
        NOS1AP is a genetic modifier of the long-QT syndrome.
        Circulation. 2009; 120: 1657-1663
        • Chen L.Y.
        • Ballew J.D.
        • Herron K.J.
        • et al.
        A common polymorphism in SCN5A is associated with lone atrial fibrillation.
        Clin Pharmacol Ther. 2007; 81: 35-41
        • Bezzina C.R.
        • Shimizu W.
        • Yang P.
        • et al.
        Common sodium channel promoter haplotype in Asian subjects underlies variability in cardiac conduction.
        Circulation. 2006; 113: 338-344
        • Abriel H.
        Cardiac sodium channel Na(v)1.5 and interacting proteins: physiology and pathophysiology.
        J Mol Cell Cardiol. 2010; 48: 2-11
        • Nademanee K.
        • Veerakul G.
        • Chandanamattha P.
        • et al.
        Prevention of ventricular fibrillation episodes in Brugada syndrome by catheter ablation over the anterior right ventricular outflow tract epicardium.
        Circulation. 2011; 123: 1270-1279
        • Kapplinger J.D.
        • Tester D.J.
        • Alders M.
        • et al.
        An international compendium of mutations in the SCN5A-encoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing.
        Heart Rhythm. 2010; 7: 33-46
        • Nielsen M.W.
        • Holst A.G.
        • Olesen S.P.
        • et al.
        The genetic component of Brugada syndrome.
        Front Physiol. 2013; 4: 179
        • Gehi A.K.
        • Duong T.D.
        • Metz L.D.
        • et al.
        Risk stratification of individuals with the Brugada electrocardiogram: a meta-analysis.
        J Cardiovasc Electrophysiol. 2006; 17: 577-583
        • Probst V.
        • Veltmann C.
        • Eckardt L.
        • et al.
        Long-term prognosis of patients diagnosed with Brugada syndrome: results from the FINGER Brugada Syndrome Registry.
        Circulation. 2010; 121: 635-643
        • Ackerman M.J.
        • Priori S.G.
        • Willems S.
        • et al.
        HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA).
        Heart Rhythm. 2011; 8: 1308-1339
        • Wang Q.
        • Shen J.
        • Li Z.
        • et al.
        Cardiac sodium channel mutations in patients with long QT syndrome, an inherited cardiac arrhythmia.
        Hum Mol Genet. 1995; 4: 1603-1607
        • Vatta M.
        • Ackerman M.J.
        • Ye B.
        • et al.
        Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome.
        Circulation. 2006; 114: 2104-2112
        • Medeiros-Domingo A.
        • Kaku T.
        • Tester D.J.
        • et al.
        SCN4B-encoded sodium channel beta4 subunit in congenital long-QT syndrome.
        Circulation. 2007; 116: 134-142
        • Ueda K.
        • Valdivia C.
        • Medeiros-Domingo A.
        • et al.
        Syntrophin mutation associated with long QT syndrome through activation of the nNOS-SCN5A macromolecular complex.
        Proc Natl Acad Sci U S A. 2008; 105: 9355-9360
        • Giudicessi J.R.
        • Ackerman M.J.
        Genotype- and phenotype-guided management of congenital long QT syndrome.
        Curr Probl Cardiol. 2013; 38: 417-455
        • Wilde A.
        • Kaufman E.
        • Shimizu W.
        • et al.
        Sodium channel mutations, risk of cardiac events, and efficacy of beta-blocker therapy in type 3 long QT syndrome.
        Heart Rhythm. 2012; 9: S321
        • Schwartz P.J.
        • Priori S.G.
        • Spazzolini C.
        • et al.
        Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias.
        Circulation. 2001; 103: 89-95
        • Schwartz P.J.
        • Priori S.G.
        • Locati E.H.
        • et al.
        Long QT syndrome patients with mutations of the SCN5A and HERG genes have differential responses to Na+ channel blockade and to increases in heart rate. Implications for gene-specific therapy.
        Circulation. 1995; 92: 3381-3386
        • Windle J.R.
        • Geletka R.C.
        • Moss A.J.
        • et al.
        Normalization of ventricular repolarization with flecainide in long QT syndrome patients with SCN5A: deltakpq mutation.
        Ann Noninvasive Electrocardiol. 2001; 6: 153-158
        • Ruan Y.
        • Denegri M.
        • Liu N.
        • et al.
        Trafficking defects and gating abnormalities of a novel SCN5A mutation question gene-specific therapy in long QT syndrome type 3.
        Circ Res. 2010; 106: 1374-1383
        • Moss A.J.
        • Zareba W.
        • Schwarz K.Q.
        • et al.
        Ranolazine shortens repolarization in patients with sustained inward sodium current due to type-3 long-QT syndrome.
        J Cardiovasc Electrophysiol. 2008; 19: 1289-1293
        • van den Berg M.P.
        • Van den Heuvel F.
        • Van Tintelen J.P.
        • et al.
        Successful treatment of a patient with symptomatic long QT syndrome type 3 using ranolazine combined with a beta-blocker.
        Int J Cardiol. 2014; 171: 90-92
        • Antzelevitch C.
        • Burashnikov A.
        • Sicouri S.
        • et al.
        Electrophysiologic basis for the antiarrhythmic actions of ranolazine.
        Heart Rhythm. 2011; 8: 1281-1290
        • Benson D.W.
        • Wang D.W.
        • Dyment M.
        • et al.
        Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A).
        J Clin Invest. 2003; 112: 1019-1028
        • Schott J.J.
        • Alshinawi C.
        • Kyndt F.
        • et al.
        Cardiac conduction defects associate with mutations in SCN5A.
        Nat Genet. 1999; 23: 20-21
        • Tan H.L.
        • Bink-Boelkens M.T.
        • Bezzina C.R.
        • et al.
        A sodium-channel mutation causes isolated cardiac conduction disease.
        Nature. 2001; 409: 1043-1047
        • Smits J.P.
        • Koopmann T.T.
        • Wilders R.
        • et al.
        A mutation in the human cardiac sodium channel (E161K) contributes to sick sinus syndrome, conduction disease and Brugada syndrome in two families.
        J Mol Cell Cardiol. 2005; 38: 969-981
        • Makita N.
        • Behr E.
        • Shimizu W.
        • et al.
        The E1784K mutation in SCN5A is associated with mixed clinical phenotype of type 3 long QT syndrome.
        J Clin Invest. 2008; 118: 2219-2229
        • Riahi S.
        • Nielsen J.C.
        • Hjortshoj S.
        • et al.
        Heart failure in patients with sick sinus syndrome treated with single lead atrial or dual-chamber pacing: no association with pacing mode or right ventricular pacing site.
        Europace. 2012; 14: 1475-1482
        • Lau C.P.
        • Tachapong N.
        • Wang C.C.
        • et al.
        Prospective randomized study to assess the efficacy of site and rate of atrial pacing on long-term progression of atrial fibrillation in sick sinus syndrome: Septal Pacing for Atrial Fibrillation Suppression Evaluation (SAFE) Study.
        Circulation. 2013; 128: 687-693
        • Gillis A.M.
        • Russo A.M.
        • Ellenbogen K.A.
        • et al.
        HRS/ACCF expert consensus statement on pacemaker device and mode selection. Developed in partnership between the Heart Rhythm Society (HRS) and the American College of Cardiology Foundation (ACCF) and in collaboration with the Society of Thoracic Surgeons.
        Heart Rhythm. 2012; 9: 1344-1365
        • Morris G.M.
        • Boyett M.R.
        Perspectives: biological pacing, a clinical reality?.
        Ther Adv Cardiovasc Dis. 2009; 3: 479-483
        • Benjamin E.J.
        • Wolf P.A.
        • D'Agostino R.B.
        • et al.
        Impact of atrial fibrillation on the risk of death: the Framingham Heart Study.
        Circulation. 1998; 98: 946-952
        • Parvez B.
        • Darbar D.
        The “missing” link in atrial fibrillation heritability.
        J Electrocardiol. 2011; 44: 641-644
        • Weeke P.
        • Parvez B.
        • Blair M.
        • et al.
        Candidate gene approach to identifying rare genetic variants associated with lone atrial fibrillation.
        Heart Rhythm. 2014; 11: 46-52
        • Olesen M.S.
        • Andreasen L.
        • Jabbari J.
        • et al.
        Very early onset lone atrial fibrillation patients have a high prevalence of rare variants in genes previously associated with atrial fibrillation.
        Heart Rhythm. 2013; 11: 246-251
        • McNair W.P.
        • Ku L.
        • Taylor M.R.
        • et al.
        SCN5A mutation associated with dilated cardiomyopathy, conduction disorder, and arrhythmia.
        Circulation. 2004; 110: 2163-2167
        • Olson T.M.
        • Michels V.V.
        • Ballew J.D.
        • et al.
        Sodium channel mutations and susceptibility to heart failure and atrial fibrillation.
        JAMA. 2005; 293: 447-454
        • Watanabe H.
        • Yang T.
        • Stroud D.M.
        • et al.
        Striking in vivo phenotype of a disease-associated human SCN5A mutation producing minimal changes in vitro.
        Circulation. 2011; 124: 1001-1011
        • Yancy C.W.
        • Jessup M.
        • Bozkurt B.
        • et al.
        2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines.
        J Am Coll Cardiol. 2013; 62: e147-e239
        • Gollob M.H.
        • Blier L.
        • Brugada R.
        • et al.
        Recommendations for the use of genetic testing in the clinical evaluation of inherited cardiac arrhythmias associated with sudden cardiac death: Canadian Cardiovascular Society/Canadian Heart Rhythm Society joint position paper.
        Can J Cardiol. 2011; 27: 232-245