Advertisement
Review Article| Volume 6, ISSUE 4, P797-809, December 2014

Download started.

Ok

Diseases Caused by Mutations in Nav1.5 Interacting Proteins

Published:September 25, 2014DOI:https://doi.org/10.1016/j.ccep.2014.08.007

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cardiac Electrophysiology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Adsit G.S.
        • Vaidyanathan R.
        • Galler C.M.
        • et al.
        Channelopathies from mutations in the cardiac sodium channel protein complex.
        J Mol Cell Cardiol. 2013; 61: 34-43
        • Abriel H.
        Cardiac sodium channel Na(v)1.5 and interacting proteins: physiology and pathophysiology.
        J Mol Cell Cardiol. 2010; 48: 2-11
        • Makielski J.C.
        Sudden infant death syndrome.
        in: Zipes D.P. Jalife J. Cardiac electrophysiology: from cell to bedside. 6th edition. Elsevier, Philadelphia2014: 975-980
        • Isom L.L.
        • De Jongh K.H.
        • Catterall W.A.
        Auxiliary subunits of voltage-gated ion channels.
        Neuron. 1994; 12: 1183-1194
        • Lin C.
        • Guo X.
        • Lange S.
        • et al.
        Cypher/ZASP is a novel A-kinase anchoring protein.
        J Biol Chem. 2013; 288: 29403-29413
        • Vaidyanathan R.
        • Makielski J.C.
        Scaffolding proteins and ion channel diseases.
        in: Zipes D.P. Jalife J. Cardiac electrophysiology: from cell to bedside. 6th edition. Elsevier, Philadelphia2014: 229-234
        • Murray K.T.
        • Hu N.N.
        • Daw J.R.
        • et al.
        Functional effects of protein kinase C activation on the human cardiac Na+ channel.
        Circ Res. 1997; 80: 370-376
        • van Bemmelen M.X.
        • Rougier J.S.
        • Gavillet B.
        • et al.
        Cardiac voltage-gated sodium channel Nav1.5 is regulated by Nedd4-2 mediated ubiquitination.
        Circ Res. 2004; 95: 284-291
        • Shy D.
        • Gillet L.
        • Abriel H.
        Cardiac sodium channel NaV1.5 distribution in myocytes via interacting proteins: the multiple pool model.
        Biochim Biophys Acta. 2013; 1833: 886-894
        • Petitprez S.
        • Zmoos A.F.
        • Ogrodnik J.
        • et al.
        SAP97 and dystrophin macromolecular complexes determine two pools of cardiac sodium channels Nav1.5 in cardiomyocytes.
        Circ Res. 2011; 108: 294-304
        • Maltsev V.A.
        • Kyle J.W.
        • Mishra S.
        • et al.
        Molecular identity of the late sodium current in adult dog cardiomyocytes identified by Nav1.5 antisense inhibition.
        Am J Physiol Heart Circ Physiol. 2008; 295: H667-H676
        • London B.
        • Michalec M.
        • Mehdi H.
        • et al.
        Mutation in glycerol-3-phosphate dehydrogenase 1 like gene (GPD1-L) decreases cardiac Na+ current and causes inherited arrhythmias.
        Circulation. 2007; 116: 2260-2268
        • Mazzone A.
        • Strege P.R.
        • Tester D.J.
        • et al.
        A mutation in telethonin alters nav1.5 function.
        J Biol Chem. 2008; 283: 16537-16544
        • Mohler P.J.
        • Rivolta I.
        • Napolitano C.
        • et al.
        Nav1.5 E1053K mutation causing Brugada syndrome blocks binding to ankyrin-G and expression of Nav1.5 on the surface of cardiomyocytes.
        Proc Natl Acad Sci U S A. 2004; 101: 17533-17538
        • Crotti L.
        • Johnson C.N.
        • Graf E.
        • et al.
        Calmodulin mutations associated with recurrent cardiac arrest in infants.
        Circulation. 2013; 127: 1009-1017
        • Bhat H.F.
        • Adams M.E.
        • Khanday F.A.
        Syntrophin proteins as Santa Claus: role(s) in cell signal transduction.
        Cell Mol Life Sci. 2013; 70: 2533-2554
        • Barouch L.A.
        • Harrison R.W.
        • Skaf M.W.
        • et al.
        Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms.
        Nature. 2002; 416: 337-339
        • Gavillet B.
        • Rougier J.S.
        • Domenighetti A.A.
        • et al.
        Cardiac sodium channel Nav1.5 is regulated by a multiprotein complex composed of syntrophins and dystrophin.
        Circ Res. 2006; 99: 407-414
        • Ueda K.
        • Valdivia C.
        • Medeiros-Domingo A.
        • et al.
        Syntrophin mutation associated with long QT syndrome through activation of the nNOS-SCN5A macromolecular complex.
        Proc Natl Acad Sci U S A. 2008; 105: 9355-9360
        • Williams J.C.
        • Armesilla A.L.
        • Mohamed T.M.
        • et al.
        The sarcolemmal calcium pump, alpha-1 syntrophin, and neuronal nitric-oxide synthase are parts of a macromolecular protein complex.
        J Biol Chem. 2006; 281: 23341-23348
        • Oceandy D.
        • Cartwright E.J.
        • Emerson M.
        • et al.
        Neuronal nitric oxide synthase signaling in the heart is regulated by the sarcolemmal calcium pump 4b.
        Circulation. 2007; 115: 483-492
        • Wu G.
        • Ai T.
        • Kim J.J.
        • et al.
        alpha-1-syntrophin mutation and the long-QT syndrome: a disease of sodium channel disruption.
        Circ Arrhythm Electrophysiol. 2008; 1: 193-201
        • Cheng J.
        • Van Norstrand D.W.
        • Medeiros-Domingo A.
        • et al.
        Alpha1-syntrophin mutations identified in sudden infant death syndrome cause an increase in late cardiac sodium current.
        Circ Arrhythm Electrophysiol. 2009; 2: 667-676
        • Hu R.M.
        • Tan B.H.
        • Orland K.M.
        • et al.
        Digenic inheritance novel mutations in SCN5a and SNTA1 increase late I(Na) contributing to LQT syndrome.
        Am J Physiol Heart Circ Physiol. 2013; 304: H994-H1001
        • Cheng J.
        • Norstrand D.W.
        • Medeiros-Domingo A.
        • et al.
        LQTS-associated mutation A257G in alpha1-syntrophin interacts with the intragenic variant P74L to modify its biophysical phenotype.
        Cardiogenetics. 2011; 1: 55-59
        • Balijepalli R.C.
        • Kamp T.J.
        Caveolae, ion channels and cardiac arrhythmias.
        Prog Biophys Mol Biol. 2008; 98: 149-160
        • Li S.
        • Galbiati F.
        • Volonte D.
        • et al.
        Mutational analysis of caveolin-induced vesicle formation. Expression of caveolin-1 recruits caveolin-2 to caveolae membranes.
        FEBS Lett. 1998; 434: 127-134
        • McNally E.M.
        • de Sa M.E.
        • Duggan D.J.
        • et al.
        Caveolin-3 in muscular dystrophy.
        Hum Mol Genet. 1998; 7: 871-877
        • Vatta M.
        • Ackerman M.J.
        • Ye B.
        • et al.
        Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome.
        Circulation. 2006; 114: 2104-2112
        • Cronk L.B.
        • Ye B.
        • Kaku T.
        • et al.
        Novel mechanism for sudden infant death syndrome: persistent late sodium current secondary to mutations in caveolin-3.
        Heart Rhythm. 2007; 4: 161-166
        • Venema V.J.
        • Ju H.
        • Zou R.
        • et al.
        Interaction of neuronal nitric-oxide synthase with caveolin-3 in skeletal muscle. Identification of a novel caveolin scaffolding/inhibitory domain.
        J Biol Chem. 1997; 272: 28187-28190
        • Cheng J.
        • Valdivia C.R.
        • Vaidyanathan R.
        • et al.
        Caveolin-3 suppresses late sodium current by inhibiting nNOS-dependent S-nitrosylation of SCN5A.
        J Mol Cell Cardiol. 2013; 61: 102-110
        • Vaidyanathan R.
        • Vega A.L.
        • Song C.
        • et al.
        The interaction of caveolin 3 with the inward rectifier channel Kir2.1; physiology and pathology related to LQT9.
        J Biol Chem. 2013; 288: 17472-17480
        • Ou X.
        • Ji C.
        • Han X.
        • et al.
        Crystal structures of human glycerol 3-phosphate dehydrogenase 1 (GPD1).
        J Mol Biol. 2006; 357: 858-869
        • Weiss R.
        • Barmada M.M.
        • Nguyen T.
        • et al.
        Clinical and molecular heterogeneity in the Brugada syndrome: a novel gene locus on chromosome 3.
        Circulation. 2002; 105: 707-713
        • Van Norstrand D.W.
        • Valdivia C.R.
        • Tester D.J.
        • et al.
        Molecular and functional characterization of novel glycerol-3-phosphate dehydrogenase 1 like gene (GPD1-L) mutations in sudden infant death syndrome.
        Circulation. 2007; 116: 2253-2259
        • Valdivia C.R.
        • Ueda K.
        • Ackerman M.J.
        • et al.
        GPD1L links redox state to cardiac excitability by PKC-dependent phosphorylation of the sodium channel SCN5A.
        Am J Physiol Heart Circ Physiol. 2009; 297: H1446-H1452
        • Liu M.
        • Sanyal S.
        • Gao G.
        • et al.
        Cardiac Na+ current regulation by pyridine nucleotides.
        Circ Res. 2009; 105: 737-745
        • Liu M.
        • Liu H.
        • Dudley Jr., S.C.
        Reactive oxygen species originating from mitochondria regulate the cardiac sodium channel.
        Circ Res. 2010; 107: 967-974
        • Makiyama T.
        • Akao M.
        • Haruna Y.
        • et al.
        Mutation analysis of the glycerol-3 phosphate dehydrogenase-1 like (GPD1L) gene in Japanese patients with Brugada syndrome.
        Circ J. 2008; 72: 1705-1706
        • Westaway S.K.
        • Reinier K.
        • Huertas-Vazquez A.
        • et al.
        Common variants in CASQ2, GPD1L, and NOS1AP are significantly associated with risk of sudden death in patients with coronary artery disease.
        Circ Cardiovasc Genet. 2011; 4: 397-402
        • Steggerda S.M.
        • Paschal B.M.
        Identification of a conserved loop in Mog1 that releases GTP from Ran.
        Traffic. 2001; 2: 804-811
        • Marfatia K.A.
        • Harreman M.T.
        • Fanara P.
        • et al.
        Identification and characterization of the human MOG1 gene.
        Gene. 2001; 266: 45-56
        • Wu L.
        • Yong S.L.
        • Fan C.
        • et al.
        Identification of a new co-factor, MOG1, required for the full function of cardiac sodium channel Nav 1.5.
        J Biol Chem. 2008; 283: 6968-6978
        • Chakrabarti S.
        • Wu X.
        • Yang Z.
        • et al.
        MOG1 rescues defective trafficking of Na(v)1.5 mutations in Brugada syndrome and sick sinus syndrome.
        Circ Arrhythm Electrophysiol. 2013; 6: 392-401
        • Kattygnarath D.
        • Maugenre S.
        • Neyroud N.
        • et al.
        MOG1: a new susceptibility gene for Brugada syndrome.
        Circ Cardiovasc Genet. 2011; 4: 261-268
        • Olesen M.S.
        • Jensen N.F.
        • Holst A.G.
        • et al.
        A novel nonsense variant in Nav1.5 cofactor MOG1 eliminates its sodium current increasing effect and may increase the risk of arrhythmias.
        Can J Cardiol. 2011; 27: 523
        • Campuzano O.
        • Berne P.
        • Selga E.
        • et al.
        Brugada syndrome and p.E61X_RANGRF.
        Cardiol J. 2014; 21: 121-127
        • Bass-Zubek A.E.
        • Godsel L.M.
        • Delmar M.
        • et al.
        Plakophilins: multifunctional scaffolds for adhesion and signaling.
        Curr Opin Cell Biol. 2009; 21: 708-716
        • Kowalczyk A.P.
        • Green K.J.
        Structure, function, and regulation of desmosomes.
        Prog Mol Biol Transl Sci. 2013; 116: 95-118
        • van Tintelen J.P.
        • Entius M.M.
        • Bhuiyan Z.A.
        • et al.
        Plakophilin-2 mutations are the major determinant of familial arrhythmogenic right ventricular dysplasia/cardiomyopathy.
        Circulation. 2006; 113: 1650-1658
        • Valdivia C.R.
        • Chu W.W.
        • Pu J.L.
        • et al.
        Increased late sodium current in myocytes from a canine heart failure model and from failing human heart.
        J Mol Cell Cardiol. 2005; 38: 475-483
        • Noorman M.
        • Hakim S.
        • Kessler E.
        • et al.
        Remodeling of the cardiac sodium channel, connexin43, and plakoglobin at the intercalated disk in patients with arrhythmogenic cardiomyopathy.
        Heart Rhythm. 2013; 10: 412-419
        • Sato P.Y.
        • Musa H.
        • Coombs W.
        • et al.
        Loss of plakophilin-2 expression leads to decreased sodium current and slower conduction velocity in cultured cardiac myocytes.
        Circ Res. 2009; 105: 523-526
        • Cerrone M.
        • Noorman M.
        • Lin X.
        • et al.
        Sodium current deficit and arrhythmogenesis in a murine model of plakophilin-2 haploinsufficiency.
        Cardiovasc Res. 2012; 95: 460-468
        • Cerrone M.
        • Lin X.
        • Zhang M.
        • et al.
        Missense mutations in plakophilin-2 cause sodium current deficit and associate with a Brugada syndrome phenotype.
        Circulation. 2014; 129: 1092-1103
        • Cerrone M.
        • Delmar M.
        Desmosomes and the sodium channel complex: Implications for arrhythmogenic cardiomyopathy and Brugada syndrome.
        Trends Cardiovasc Med. 2014; 24: 184-190
        • Wielowieyski P.A.
        • Sevinc S.
        • Guzzo R.
        • et al.
        Alternative splicing, expression, and genomic structure of the 3' region of the gene encoding the sarcolemmal-associated proteins (SLAPs) defines a novel class of coiled-coil tail-anchored membrane proteins.
        J Biol Chem. 2000; 275: 38474-38481
        • Ishikawa T.
        • Sato A.
        • Marcou C.A.
        • et al.
        A novel disease gene for Brugada syndrome: sarcolemmal membrane-associated protein gene mutations impair intracellular trafficking of hNav1.5.
        Circ Arrhythm Electrophysiol. 2012; 5: 1098-1107
        • te Velthuis A.J.
        • Isogai T.
        • Gerrits L.
        • et al.
        Insights into the molecular evolution of the PDZ/LIM family and identification of a novel conserved protein motif.
        PLoS One. 2007; 2: e189
        • Vatta M.
        • Mohapatra B.
        • Jimenez S.
        • et al.
        Mutations in Cypher/ZASP in patients with dilated cardiomyopathy and left ventricular non-compaction.
        J Am Coll Cardiol. 2003; 42: 2014-2027
        • Zheng M.
        • Cheng H.
        • Banerjee I.
        • et al.
        ALP/Enigma PDZ-LIM domain proteins in the heart.
        J Mol Cell Biol. 2010; 2: 96-102
        • Xi Y.
        • Ai T.
        • De Lange E.
        • et al.
        Loss of function of hNav1.5 by a ZASP1 mutation associated with intraventricular conduction disturbances in left ventricular noncompaction.
        Circ Arrhythm Electrophysiol. 2012; 5: 1017-1026
        • Allouis M.
        • Le Bouffant F.
        • Wilders R.
        • et al.
        14-3-3 is a regulator of the cardiac voltage-gated sodium channel Nav1.5.
        Circ Res. 2006; 98: 1538-1546
        • Ziane R.
        • Huang H.
        • Moghadaszadeh B.
        • et al.
        Cell membrane expression of cardiac sodium channel Na(v)1.5 is modulated by alpha-actinin-2 interaction.
        Biochemistry. 2010; 49: 166-178
        • Mohler P.J.
        • Wehrens X.H.
        Mechanisms of human arrhythmia syndromes: abnormal cardiac macromolecular interactions.
        Physiology (Bethesda). 2007; 22: 342-350
        • Lowe J.S.
        • Palygin O.
        • Bhasin N.
        • et al.
        Voltage-gated Nav channel targeting in the heart requires an ankyrin-G dependent cellular pathway.
        J Cell Biol. 2008; 180: 173-186
        • Dhar Malhotra J.
        • Chen C.
        • Rivolta I.
        • et al.
        Characterization of sodium channel alpha- and beta-subunits in rat and mouse cardiac myocytes.
        Circulation. 2001; 103: 1303-1310
        • Valdivia C.R.
        • Nagatomo T.
        • Makielski J.C.
        Late currents affect kinetics for heart and skeletal Na channel α and β1 subunits expressed in HEK293 cells.
        J Mol Cell Cardiol. 2002; 34: 1029-1039
        • Maltsev V.A.
        • Kyle J.W.
        • Undrovinas A.
        Late Na+ current produced by human cardiac Na+ channel isoform Nav1.5 is modulated by its beta1 subunit.
        J Physiol Sci. 2009; 59: 217-225
        • Herfst L.J.
        • Potet F.
        • Bezzina C.R.
        • et al.
        Na+ channel mutation leading to loss of function and non-progressive cardiac conduction defects.
        J Mol Cell Cardiol. 2003; 35: 549-557
        • Nuss H.B.
        • Chiamvimonvat N.
        • Perez-Garcia M.T.
        • et al.
        Functional association of the β1 subunit with human cardiac (hH1) and rat skeletal muscle (μ1) sodium channel α subunits expressed in Xenopus oocytes.
        J Gen Physiol. 1995; 106: 1171-1191
        • Lopez-Santiago L.F.
        • Meadows L.S.
        • Ernst S.J.
        • et al.
        Sodium channel Scn1b null mice exhibit prolonged QT and RR intervals.
        J Mol Cell Cardiol. 2007; 43: 636-647
        • Johnson D.
        • Bennett E.S.
        Isoform-specific effects of the beta2 subunit on voltage-gated sodium channel gating.
        J Biol Chem. 2006; 281: 25875-25881
        • Mishra S.
        • Undrovinas N.A.
        • Maltsev V.A.
        • et al.
        Post-transcriptional silencing of SCN1B and SCN2B genes modulates late sodium current in cardiac myocytes from normal dogs and dogs with chronic heart failure.
        Am J Physiol Heart Circ Physiol. 2011; 301: H1596-H1605
        • Hakim P.
        • Brice N.
        • Thresher R.
        • et al.
        Scn3b knockout mice exhibit abnormal sino-atrial and cardiac conduction properties.
        Acta Physiol (Oxf). 2010; 198: 47-59
        • Fahmi A.I.
        • Patel M.
        • Stevens E.B.
        • et al.
        The sodium channel beta-subunit SCN3b modulates the kinetics of SCN5a and is expressed heterogeneously in sheep heart.
        J Physiol. 2001; 537: 693-700
        • Hakim P.
        • Gurung I.S.
        • Pedersen T.H.
        • et al.
        Scn3b knockout mice exhibit abnormal ventricular electrophysiological properties.
        Prog Biophys Mol Biol. 2008; 98: 251-266
        • Medeiros-Domingo A.
        • Kaku T.
        • Tester D.J.
        • et al.
        SCN4B-encoded sodium channel {beta}4 subunit in congenital long-QT syndrome.
        Circulation. 2007; 116: 136-142
        • Remme C.A.
        • Scicluna B.P.
        • Verkerk A.O.
        • et al.
        Genetically determined differences in sodium current characteristics modulate conduction disease severity in mice with cardiac sodium channelopathy.
        Circ Res. 2009; 104: 1283-1292
        • Hund T.J.
        • Koval O.M.
        • Li J.
        • et al.
        A beta(IV)-spectrin/CaMKII signaling complex is essential for membrane excitability in mice.
        J Clin Invest. 2010; 120: 3508-3519
        • Kim J.
        • Ghosh S.
        • Liu H.
        • et al.
        Calmodulin mediates Ca2+ sensitivity of sodium channels.
        J Biol Chem. 2004; 279: 45004-45012
        • Chagot B.
        • Chazin W.J.
        Solution NMR structure of Apo-calmodulin in complex with the IQ motif of human cardiac sodium channel NaV1.5.
        J Mol Biol. 2011; 406: 106-119
        • Tan H.L.
        • Kupershmidt S.
        • Zhang R.
        • et al.
        A calcium sensor in the sodium channel modulates cardiac excitability.
        Nature. 2002; 415: 442-447
        • Aiba T.
        • Hesketh G.G.
        • Liu T.
        • et al.
        Na+ channel regulation by Ca2+/calmodulin and Ca2+/calmodulin-dependent protein kinase II in guinea-pig ventricular myocytes.
        Cardiovasc Res. 2010; 85: 454-463
        • Koval O.M.
        • Snyder J.S.
        • Wolf R.M.
        • et al.
        Ca2+/calmodulin-dependent protein kinase II-based regulation of voltage-gated Na+ channel in cardiac disease.
        Circulation. 2012; 126: 2084-2094
        • van der Velden H.M.
        • Jongsma H.J.
        Cardiac gap junctions and connexins: their role in atrial fibrillation and potential as therapeutic targets.
        Cardiovasc Res. 2002; 54: 270-279
        • Malhotra J.D.
        • Thyagarajan V.
        • Chen C.
        • et al.
        Tyrosine-phosphorylated and nonphosphorylated sodium channel beta1 subunits are differentially localized in cardiac myocytes.
        J Biol Chem. 2004; 279: 40748-40754
        • Jansen J.A.
        • Noorman M.
        • Musa H.
        • et al.
        Reduced heterogeneous expression of Cx43 results in decreased Nav1.5 expression and reduced sodium current that accounts for arrhythmia vulnerability in conditional Cx43 knockout mice.
        Heart Rhythm. 2012; 9: 600-607
        • Rizzo S.
        • Lodder E.M.
        • Verkerk A.O.
        • et al.
        Intercalated disc abnormalities, reduced Na(+) current density, and conduction slowing in desmoglein-2 mutant mice prior to cardiomyopathic changes.
        Cardiovasc Res. 2012; 95: 409-418
        • Albesa M.
        • Ogrodnik J.
        • Rougier J.S.
        • et al.
        Regulation of the cardiac sodium channel Nav1.5 by utrophin in dystrophin-deficient mice.
        Cardiovasc Res. 2011; 89: 320-328
        • Wang C.
        • Hennessey J.A.
        • Kirkton R.D.
        • et al.
        Fibroblast growth factor homologous factor 13 regulates Na+ channels and conduction velocity in murine hearts.
        Circ Res. 2011; 109: 775-782
        • Ou Y.J.
        • Strege P.
        • Miller S.M.
        • et al.
        Syntrophin gamma 2 regulates SCN5A Gating by a PDZ domain-mediated interaction.
        J Biol Chem. 2003; 278: 1915-1923
        • Jespersen T.
        • Gavillet B.
        • van Bemmelen M.X.
        • et al.
        Cardiac sodium channel Na(v)1.5 interacts with and is regulated by the protein tyrosine phosphatase PTPH1.
        Biochem Biophys Res Commun. 2006; 348: 1455-1462
        • Trane A.E.
        • Pavlov D.
        • Sharma A.
        • et al.
        Deciphering the binding of caveolin-1 to client protein endothelial nitric oxide synthase (eNOS): scaffolding sub-domain identification, interaction modeling, and biological significance.
        J Biol Chem. 2014; 289: 13273-13283