Advertisement
Review Article| Volume 13, ISSUE 1, P1-23, March 2021

Download started.

Ok

Epidemiology of Atrial Fibrillation

Geographic/Ecological Risk Factors, Age, Sex, Genetics
  • Juqian Zhang
    Affiliations
    Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, L14 3PE, UK
    Search for articles by this author
  • Søren Paaske Johnsen
    Affiliations
    Department of Clinical Medicine, Aalborg University, Søndre Skovvej 15, Aalborg, Aalborg 9000, Denmark
    Search for articles by this author
  • Yutao Guo
    Affiliations
    Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, L14 3PE, UK

    Department of Cardiology, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
    Search for articles by this author
  • Gregory Y.H. Lip
    Correspondence
    Corresponding author. Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, L14 3PE, UK.
    Affiliations
    Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, L14 3PE, UK

    Department of Clinical Medicine, Aalborg University, Søndre Skovvej 15, Aalborg, Aalborg 9000, Denmark

    Department of Cardiology, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
    Search for articles by this author
Published:January 07, 2021DOI:https://doi.org/10.1016/j.ccep.2020.10.010

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cardiac Electrophysiology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kirchhof P.
        • Benussi S.
        • Kotecha D.
        • et al.
        2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS.
        Europace. 2016; 18: 1609-1678
        • Schnabel R.B.
        • Yin X.
        • Gona P.
        • et al.
        50 year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the Framingham Heart Study: a cohort study.
        Lancet. 2015; 386: 154-162
        • Turakhia M.P.
        • Shafrin J.
        • Bognar K.
        • et al.
        Estimated prevalence of undiagnosed atrial fibrillation in the United States.
        PLoS One. 2018; 13: e0195088
        • Krijthe B.P.
        • Kunst A.
        • Benjamin E.J.
        • et al.
        Projections on the number of individuals with atrial fibrillation in the European Union, from 2000 to 2060.
        Eur Heart J. 2013; 34: 2746-2751
        • Lippi G.
        • Sanchis-Gomar F.
        • Cervellin G.
        Global epidemiology of atrial fibrillation: an increasing epidemic and public health challenge.
        Int J Stroke. 2020; (1747493019897870)https://doi.org/10.1177/1747493019897870
        • Patel N.J.
        • Deshmukh A.
        • Pant S.
        • et al.
        Contemporary trends of hospitalization for atrial fibrillation in the United States, 2000 through 2010: implications for healthcare planning.
        Circulation. 2014; 129: 2371-2379
        • Johnsen S.P.
        • Dalby L.W.
        • Tackstrom T.
        • et al.
        Cost of illness of atrial fibrillation: a nationwide study of societal impact.
        BMC Health Serv Res. 2017; 17: 714
        • Odutayo A.
        • Wong C.X.
        • Hsiao A.J.
        • et al.
        Atrial fibrillation and risks of cardiovascular disease, renal disease, and death: systematic review and meta-analysis.
        BMJ. 2016; 354: i4482
      1. Centers for disease control and prevention NCfHS. Underlying causes of death, 1999-2008.
        (Available at:) (Accessed June 2, 2020)
        • Muthalaly R.G.
        • Koplan B.A.
        • Albano A.
        • et al.
        Low population prevalence of atrial fibrillation in rural Uganda: a community-based cross-sectional study.
        Int J Cardiol. 2018; 271: 87-91
        • Tegene E.
        • Tadesse I.
        • Markos Y.
        • et al.
        Prevalence and risk factors for atrial fibrillation and its anticoagulant requirement in adults aged ≥40 in Jimma Town, Southwest Ethiopia: a community based cross-sectional study.
        Int J Cardiol Heart Vasc. 2019; 22: 199-204
        • Wang X.
        • Fu Q.
        • Song F.
        • et al.
        Prevalence of atrial fibrillation in different socioeconomic regions of China and its association with stroke: results from a national stroke screening survey.
        Int J Cardiol. 2018; 271: 92-97
        • c L.
        • Lin M.
        • Du Z.
        • et al.
        Epidemiology of atrial fibrillation in northeast China: a cross-sectional study, 2017-2019.
        Heart. 2020; 106: 590-595
        • Lip G.Y.H.
        • Brechin C.M.
        • Lane D.A.
        The global burden of atrial fibrillation and stroke: a systematic review of the epidemiology of atrial fibrillation in regions outside North America and Europe.
        Chest. 2012; 142: 1489-1498
        • Kodani E.
        • Kaneko T.
        • Fujii H.
        • et al.
        Prevalence and incidence of atrial fibrillation in the general population based on national health insurance special health checkups - TAMA MED Project-AF.
        Circ J. 2019; 83: 524-531
        • Narita N.
        • Okumura K.
        • Kinjo T.
        • et al.
        Trends in prevalence of non-valvular atrial fibrillation and anticoagulation therapy in a Japanese region - analysis using the national health insurance database.
        Circ J. 2020; 84: 706-713
        • Proietti M.
        • Mairesse G.H.
        • Goethals P.
        • et al.
        A population screening programme for atrial fibrillation: a report from the Belgian heart rhythm week screening programme.
        Europace. 2016; 18: 1779-1786
        • Marzona I.
        • Proietti M.
        • Vannini T.
        • et al.
        Sex-related differences in prevalence, treatment and outcomes in patients with atrial fibrillation.
        Intern Emerg Med. 2020; 15: 231-240
        • Friberg L.
        • Bergfeldt L.
        Atrial fibrillation prevalence revisited.
        J Intern Med. 2013; 274: 461-468
        • Diouf I.
        • Magliano D.J.
        • Carrington M.J.
        • et al.
        Prevalence, incidence, risk factors and treatment of atrial fibrillation in Australia: the Australian Diabetes, Obesity and Lifestyle (AusDiab) longitudinal, population cohort study.
        Int J Cardiol. 2016; 205: 127-132
        • Naccarelli G.V.
        • Varker H.
        • Lin J.
        • et al.
        Increasing prevalence of atrial fibrillation and flutter in the United States.
        Am J Cardiol. 2009; 104: 1534-1539
        • de Moraes E.R.F.L.
        • Cirenza C.
        • Lopes R.D.
        • et al.
        Prevalence of atrial fibrillation and stroke risk assessment based on telemedicine screening tools in a primary healthcare setting.
        Eur J Intern Med. 2019; 67: 36-41
        • Marcolino M.S.
        • Palhares D.M.
        • Benjamin E.J.
        • et al.
        Atrial fibrillation: prevalence in a large database of primary care patients in Brazil.
        Europace. 2015; 17: 1787-1790
        • Lee S.R.
        • Choi E.K.
        • Han K.
        • et al.
        Prevalence of non-valvular atrial fibrillation based on geographical distribution and socioeconomic status in the entire Korean population.
        Korean Circ J. 2018; 48: 622-634
        • Mou L.
        • Norby F.L.
        • Chen L.Y.
        • et al.
        Lifetime risk of atrial fibrillation by race and socioeconomic status: ARIC study (atherosclerosis risk in communities).
        Circ Arrhythm Electrophysiol. 2018; 11: e006350
        • Institute for Health Metrics and Evaluation (IHME)
        GBD compare data visualization.
        IHME, University of Washington, Seattle (WA)2018 (Available at:) (Accessed June 3, 2020)
        • Guhl E.
        • Althouse A.
        • Sharbaugh M.
        • et al.
        Association of income and health-related quality of life in atrial fibrillation.
        Open Heart. 2019; 6: e000974
        • Jacobs M.S.
        • van Hulst M.
        • Adeoye A.M.
        • et al.
        Atrial fibrillation in Africa-an under-reported and unrecognized risk factor for stroke: a systematic review.
        Glob Heart. 2019; 14: 269-279
        • Stambler B.S.
        • Ngunga L.M.
        Atrial fibrillation in Sub-Saharan Africa: epidemiology, unmet needs, and treatment options.
        Int J Gen Med. 2015; 8: 231-242
        • Magnussen C.
        • Niiranen T.J.
        • Ojeda F.M.
        • et al.
        Sex differences and similarities in atrial fibrillation epidemiology, risk factors, and mortality in community cohorts: results from the BiomarCaRE consortium (biomarker for cardiovascular risk assessment in Europe).
        Circulation. 2017; 136: 1588-1597
        • Dewhurst M.J.
        • Adams P.C.
        • Gray W.K.
        • et al.
        Strikingly low prevalence of atrial fibrillation in elderly Tanzanians.
        J Am Geriatr Soc. 2012; 60: 1135-1140
        • Huang G.
        • Xu R.H.
        • Xu J.B.
        • et al.
        Hyperuricemia is associated with atrial fibrillation prevalence in very elderly - a community based study in Chengdu, China.
        Sci Rep. 2018; 8: 12403
        • Chan N.Y.
        • Choy C.C.
        Screening for atrial fibrillation in 13 122 Hong Kong citizens with smartphone electrocardiogram.
        Heart. 2017; 103: 24-31
        • Wong C.X.
        • Brooks A.G.
        • Cheng Y.H.
        • et al.
        Atrial fibrillation in Indigenous and non-Indigenous Australians: a cross-sectional study.
        BMJ Open. 2014; 4: e006242
        • Go A.S.
        • Hylek E.M.
        • Phillips K.A.
        • et al.
        Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and risk factors in atrial fibrillation (ATRIA) Study.
        JAMA. 2001; 285: 2370-2375
        • Marinigh R.
        • Lip G.Y.
        • Fiotti N.
        • et al.
        Age as a risk factor for stroke in atrial fibrillation patients: implications for thromboprophylaxis.
        J Am Coll Cardiol. 2010; 56: 827-837
        • Soo Y.
        • Chan N.
        • Leung K.T.
        • et al.
        Age-specific trends of atrial fibrillation-related ischaemic stroke and transient ischaemic attack, anticoagulant use and risk factor profile in Chinese population: a 15-year study.
        J Neurol Neurosurg Psychiatr. 2017; 88: 744-748
        • Inoue H.
        • Atarashi H.
        • Therapy RGfAD.
        Risk factors for thromboembolism in patients with paroxysmal atrial fibrillation.
        Am J Cardiol. 2000; 86: 852-855
        • Moulton A.W.
        • Singer D.E.
        • Haas J.S.
        Risk factors for stroke in patients with nonrheumatic atrial fibrillation: a case-control study.
        Am J Med. 1991; 91: 156-161
        • Naderi S.
        • Wang Y.
        • Miller A.L.
        • et al.
        The impact of age on the epidemiology of atrial fibrillation hospitalizations.
        Am J Med. 2014; 127 (158.e151-157)
        • O'Neal W.T.
        • Nazarian S.
        • Alonso A.
        • et al.
        Sex hormones and the risk of atrial fibrillation: the Multi-Ethnic Study of Atherosclerosis (MESA).
        Endocrine. 2017; 58: 91-96
        • Bose A.
        • O'Neal W.T.
        • Wu C.
        • et al.
        Sex differences in risk factors for incident atrial fibrillation (from the reasons for geographic and racial differences in stroke [REGARDS] study).
        Am J Cardiol. 2019; 123: 1453-1457
        • Benjamin E.J.
        • Wolf P.A.
        • D'Agostino R.B.
        • et al.
        Impact of atrial fibrillation on the risk of death: the Framingham Heart Study.
        Circulation. 1998; 98: 946-952
        • Lee E.
        • Choi E.K.
        • Han K.D.
        • et al.
        Mortality and causes of death in patients with atrial fibrillation: a nationwide population-based study.
        PLoS One. 2018; 13: e0209687
        • Emdin C.A.
        • Wong C.X.
        • Hsiao A.J.
        • et al.
        Atrial fibrillation as risk factor for cardiovascular disease and death in women compared with men: systematic review and meta-analysis of cohort studies.
        BMJ. 2016; 532: h7013
        • Humphries K.H.
        • Kerr C.R.
        • Connolly S.J.
        • et al.
        New-onset atrial fibrillation: sex differences in presentation, treatment, and outcome.
        Circulation. 2001; 103: 2365-2370
        • Murphy N.F.
        • Simpson C.R.
        • Jhund P.S.
        • et al.
        A national survey of the prevalence, incidence, primary care burden and treatment of atrial fibrillation in Scotland.
        Heart. 2007; 93: 606-612
        • Mazurek M.
        • Huisman M.V.
        • Rothman K.J.
        • et al.
        Gender differences in antithrombotic treatment for newly diagnosed atrial fibrillation: the GLORIA-AF registry program.
        Am J Med. 2018; 131: 945-955.e943
        • Fang M.C.
        • Singer D.E.
        • Chang Y.
        • et al.
        Gender differences in the risk of ischemic stroke and peripheral embolism in atrial fibrillation: the AnTicoagulation and risk factors in atrial fibrillation (ATRIA) study.
        Circulation. 2005; 112: 1687-1691
        • Lip G.Y.
        • Nieuwlaat R.
        • Pisters R.
        • et al.
        Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the euro heart survey on atrial fibrillation.
        Chest. 2010; 137: 263-272
        • Marcus G.M.
        • Alonso A.
        • Peralta C.A.
        • et al.
        European ancestry as a risk factor for atrial fibrillation in African Americans.
        Circulation. 2010; 122: 2009-2015
        • Ruo B.
        • Capra A.M.
        • Jensvold N.G.
        • et al.
        Racial variation in the prevalence of atrial fibrillation among patients with heart failure: the Epidemiology, Practice, Outcomes, and Costs of Heart Failure (EPOCH) study.
        J Am Coll Cardiol. 2004; 43: 429-435
        • Upshaw C.B.
        Reduced prevalence of atrial fibrillation in black patients compared with white patients attending an urban hospital: an electrocardiographic study.
        J Natl Med Assoc. 2002; 94: 204-208
        • Michael Smith J.
        • Soneson E.A.
        • Woods S.E.
        • et al.
        Coronary artery bypass graft surgery outcomes among African-Americans and Caucasian patients.
        Int J Surg. 2006; 4: 212-216
        • Shen A.Y.
        • Contreras R.
        • Sobnosky S.
        • et al.
        Racial/ethnic differences in the prevalence of atrial fibrillation among older adults--a cross-sectional study.
        J Natl Med Assoc. 2010; 102: 906-913
        • Hernandez M.B.
        • Asher C.R.
        • Hernandez A.V.
        • et al.
        African American race and prevalence of atrial fibrillation: a meta-analysis.
        Cardiol Res Pract. 2012; 2012: 275624
        • Guo Y.
        • Tian Y.
        • Wang H.
        • et al.
        Prevalence, incidence, and lifetime risk of atrial fibrillation in China: new insights into the global burden of atrial fibrillation.
        Chest. 2015; 147: 109-119
        • Rodriguez C.J.
        • Soliman E.Z.
        • Alonso A.
        • et al.
        Atrial fibrillation incidence and risk factors in relation to race-ethnicity and the population attributable fraction of atrial fibrillation risk factors: the Multi-Ethnic Study of Atherosclerosis.
        Ann Epidemiol. 2015; 25: 71-76, 76.e71
        • Dewland T.A.
        • Olgin J.E.
        • Vittinghoff E.
        • et al.
        Incident atrial fibrillation among Asians, Hispanics, blacks, and whites.
        Circulation. 2013; 128: 2470-2477
        • Perez M.V.
        • Hoffmann T.J.
        • Tang H.
        • et al.
        African American race but not genome-wide ancestry is negatively associated with atrial fibrillation among postmenopausal women in the Women's Health Initiative.
        Am Heart J. 2013; 166: 566-572
        • Perez M.V.
        • Wang P.J.
        • Larson J.C.
        • et al.
        Risk factors for atrial fibrillation and their population burden in postmenopausal women: the Women's health initiative observational study.
        Heart. 2013; 99: 1173-1178
        • Borzecki A.M.
        • Bridgers D.K.
        • Liebschutz J.M.
        • et al.
        Racial differences in the prevalence of atrial fibrillation among males.
        J Natl Med Assoc. 2008; 100: 237-245
        • Atzema C.L.
        • Khan S.
        • Lu H.
        • et al.
        Cardiovascular disease rates, outcomes, and quality of care in Ontario Metis: a population-based cohort study.
        PLoS One. 2015; 10: e0121779
        • Teh R.
        • Martin A.
        • Kerse N.
        • et al.
        The burden of atrial fibrillation in octogenarians.
        Heart Lung Circ. 2013; 22: 580-581
        • Koopman J.J.
        • van Bodegom D.
        • Westendorp R.G.
        • et al.
        Scarcity of atrial fibrillation in a traditional African population: a community-based study.
        BMC Cardiovasc Disord. 2014; 14: 87
        • Li L.H.
        • Sheng C.S.
        • Hu B.C.
        • et al.
        The prevalence, incidence, management and risks of atrial fibrillation in an elderly Chinese population: a prospective study.
        BMC Cardiovasc Disord. 2015; 15: 31
        • Chao T.
        • Chen S.
        P1693 the results of screen of atrial fibrillation event in Taiwan: the SAFE-Taiwan study.
        Europace. 2017; 19: iii363-iii
        • Soni A.
        • Karna S.
        • Fahey N.
        • et al.
        Age-and-sex stratified prevalence of atrial fibrillation in rural Western India: results of SMART-India, a population-based screening study.
        Int J Cardiol. 2019; 280: 84-88
        • Lim C.W.
        • Kasim S.
        • Ismail J.R.
        • et al.
        Prevalence of atrial fibrillation in the Malaysian communities.
        Heart Asia. 2016; 8: 62-66
        • Kim D.
        • Yang P.S.
        • Jang E.
        • et al.
        10-year nationwide trends of the incidence, prevalence, and adverse outcomes of non-valvular atrial fibrillation nationwide health insurance data covering the entire Korean population.
        Am Heart J. 2018; 202: 20-26
        • Phrommintikul A.
        • Detnuntarat P.
        • Prasertwitayakij N.
        • et al.
        Prevalence of atrial fibrillation in Thai elderly.
        J Geriatr Cardiol. 2016; 13: 270-273
        • Kvist T.V.
        • Lindholt J.S.
        • Rasmussen L.M.
        • et al.
        The DanCavas pilot study of multifaceted screening for subclinical cardiovascular disease in men and women aged 65-74 years.
        Eur J Vasc Endovasc Surg. 2017; 53: 123-131
        • Schnabel R.B.
        • Wilde S.
        • Wild P.S.
        • et al.
        Atrial fibrillation: its prevalence and risk factor profile in the German general population.
        Dtsch Arztebl Int. 2012; 109: 293-299
        • Smyth B.
        • Marsden P.
        • Corcoran R.
        • et al.
        Opportunistic screening for atrial fibrillation in a rural area.
        QJM. 2016; 109: 539-543
        • Di Carlo A.
        • Bellino L.
        • Consoli D.
        • et al.
        Prevalence of atrial fibrillation in the Italian elderly population and projections from 2020 to 2060 for Italy and the European Union: the FAI Project.
        Europace. 2019; 21: 1468-1475
        • Kaasenbrood F.
        • Hollander M.
        • Rutten F.H.
        • et al.
        Yield of screening for atrial fibrillation in primary care with a hand-held, single-lead electrocardiogram device during influenza vaccination.
        Europace. 2016; 18: 1514-1520
        • Berge T.
        • Lyngbakken M.N.
        • Ihle-Hansen H.
        • et al.
        Prevalence of atrial fibrillation and cardiovascular risk factors in a 63-65 years old general population cohort: the Akershus Cardiac Examination (ACE) 1950 Study.
        BMJ Open. 2018; 8: e021704
        • Rodriguez-Manero M.
        • Lopez-Pardo E.
        • Cordero-Fort A.
        • et al.
        Prevalence and outcomes of atrial fibrillation in a European healthcare area gained through the processing of a health information technology system.
        Rev Port Cardiol. 2019; 38: 21-29
        • Monteiro P.
        • endide Safira
        The SAFIRA study: a reflection on the prevalence and treatment patterns of atrial fibrillation and cardiovascular risk factors in 7500 elderly subjects.
        Rev Port Cardiol. 2018; 37: 307-313
        • Shkolnikova M.A.
        • Jdanov D.A.
        • Ildarova R.A.
        • et al.
        Atrial fibrillation among Russian men and women aged 55 years and older: prevalence, mortality, and associations with biomarkers in a population-based study.
        J Geriatr Cardiol. 2020; 17: 74-84
        • Gomez-Doblas J.J.
        • Muniz J.
        • Martin J.J.
        • et al.
        Prevalence of atrial fibrillation in Spain. OFRECE study results.
        Rev Esp Cardiol (Engl Ed). 2014; 67: 259-269
        • Lahoz C.
        • Cardenas J.
        • Salinero-Fort M.
        • et al.
        Prevalence of atrial fibrillation and associated anticoagulant therapy in the nonagenarian population of the Community of Madrid, Spain.
        Geriatr Gerontol Int. 2019; 19: 203-207
        • González Blanco V.
        • Pérula de Torres L.
        • Martín Rioboó E.
        • et al.
        Opportunistic screening for atrial fibrillation versus detecting symptomatic patients aged 65 years and older: a cluster-controlled clinical trial.
        Med Clin (Barc). 2017; 148: 8-15
        • Lindberg T.
        • Wimo A.
        • Elmståhl S.
        • et al.
        Prevalence and incidence of atrial fibrillation and other arrhythmias in the general older population: findings from the Swedish national study on aging and care.
        Gerontol Geriatr Med. 2019; 5 (2333721419859687)
        • Adderley N.J.
        • Ryan R.
        • Nirantharakumar K.
        • et al.
        Prevalence and treatment of atrial fibrillation in UK general practice from 2000 to 2016.
        Heart. 2019; 105: 27-33
        • Fitzmaurice D.A.
        • Hobbs F.D.
        • Jowett S.
        • et al.
        Screening versus routine practice in detection of atrial fibrillation in patients aged 65 or over: cluster randomised controlled trial.
        BMJ. 2007; 335: 383
        • Lowres N.
        • Neubeck L.
        • Salkeld G.
        • et al.
        Feasibility and cost-effectiveness of stroke prevention through community screening for atrial fibrillation using iPhone ECG in pharmacies. The SEARCH-AF study.
        Thromb Haemost. 2014; 111: 1167-1176
        • Tomlin A.M.
        • Lloyd H.S.
        • Tilyard M.W.
        Atrial fibrillation in New Zealand primary care: prevalence, risk factors for stroke and the management of thromboembolic risk.
        Eur J Prev Cardiol. 2017; 24: 311-319
        • Sandhu R.K.
        • Dolovich L.
        • Deif B.
        • et al.
        High prevalence of modifiable stroke risk factors identified in a pharmacy-based screening programme.
        Open Heart. 2016; 3: e000515
        • Quinn F.R.
        • Gladstone D.J.
        • Ivers N.M.
        • et al.
        Diagnostic accuracy and yield of screening tests for atrial fibrillation in the family practice setting: a multicentre cohort study.
        CMAJ Open. 2018; 6: E308-E315
        • Linares J.D.
        • Jackson L.R.
        • Dawood F.Z.
        • et al.
        Prevalence of atrial fibrillation and association with clinical, sociocultural, and ancestral correlates among Hispanic/Latinos: the Hispanic community health study/study of Latinos.
        Heart Rhythm. 2019; 16: 686-693
        • Loehr L.R.
        • Soliman E.Z.
        • Poon A.K.
        • et al.
        The prevalence of atrial fibrillation on 48-hour ambulatory electrocardiography in African Americans compared to Whites: the atherosclerosis risk in communities (ARIC) study.
        Am Heart J. 2019; 216: 1-8
        • Keen W.
        • Martin J.
        • Lopez C.
        • et al.
        Abstract 18153: screening for atrial fibrillation is feasible in US managed care outpatient facilities.
        Circulation. 2017; 136: A18153
        • Rooney M.R.
        • Soliman E.Z.
        • Lutsey P.L.
        • et al.
        Prevalence and characteristics of subclinical atrial fibrillation in a community-dwelling elderly population: the ARIC study.
        Circ Arrhythm Electrophysiol. 2019; 12: e007390
        • Del Brutto O.H.
        • Costa A.F.
        • Cano J.A.
        • et al.
        Low prevalence of atrial fibrillation in Amerindians: a population-based study in frequent fish consumers living in rural coastal Ecuador (The Atahualpa Project).
        Aging Clin Exp Res. 2018; 30: 539-542
        • Fox C.S.
        • Parise H.
        • D'Agostino R.B.
        • et al.
        Parental atrial fibrillation as a risk factor for atrial fibrillation in offspring.
        JAMA. 2004; 291: 2851-2855
        • Lubitz S.A.
        • Yin X.
        • Fontes J.D.
        • et al.
        Association between familial atrial fibrillation and risk of new-onset atrial fibrillation.
        JAMA. 2010; 304: 2263-2269
        • Gundlund A.
        • Christiansen M.N.
        • Hansen M.L.
        • et al.
        Familial clustering and subsequent incidence of atrial fibrillation among first-degree relatives in Denmark.
        Europace. 2016; 18: 658-664
        • Christophersen I.E.
        • Ravn L.S.
        • Budtz-Joergensen E.
        • et al.
        Familial aggregation of atrial fibrillation: a study in Danish twins.
        Circ Arrhythm Electrophysiol. 2009; 2: 378-383
        • Levy R.
        Paroxysmal auricular fibrillation and flutter without signs of organic cardiac disease in two brothers.
        J Mt Sinai Hosp N Y. 1942; 8: 765-770
        • Gould W.L.
        Auricular fibrillation; report on a study of a familial tendency, 1920-1956.
        AMA Arch Intern Med. 1957; 100: 916-926
        • Brugada R.
        • Tapscott T.
        • Czernuszewicz G.Z.
        • et al.
        Identification of a genetic locus for familial atrial fibrillation.
        N Engl J Med. 1997; 336: 905-911
        • Ellinor P.T.
        • Lunetta K.L.
        • Albert C.M.
        • et al.
        Meta-analysis identifies six new susceptibility loci for atrial fibrillation.
        Nat Genet. 2012; 44: 670-675
        • Lubitz S.A.
        • Brody J.A.
        • Bihlmeyer N.A.
        • et al.
        Whole exome sequencing in atrial fibrillation.
        PLoS Genet. 2016; 12: e1006284
        • Chen Y.H.
        • Xu S.J.
        • Bendahhou S.
        • et al.
        KCNQ1 gain-of-function mutation in familial atrial fibrillation.
        Science. 2003; 299: 251-254
        • Olesen M.S.
        • Holst A.G.
        • Svendsen J.H.
        • et al.
        SCN1Bb R214Q found in 3 patients: 1 with Brugada syndrome and 2 with lone atrial fibrillation.
        Heart Rhythm. 2012; 9: 770-773
        • Watanabe H.
        • Darbar D.
        • Kaiser D.W.
        • et al.
        Mutations in sodium channel β1- and β2-subunits associated with atrial fibrillation.
        Circ Arrhythm Electrophysiol. 2009; 2: 268-275
        • Olesen M.S.
        • Jespersen T.
        • Nielsen J.B.
        • et al.
        Mutations in sodium channel β-subunit SCN3B are associated with early-onset lone atrial fibrillation.
        Cardiovasc Res. 2011; 89: 786-793
        • Li R.G.
        • Wang Q.
        • Xu Y.J.
        • et al.
        Mutations of the SCN4B-encoded sodium channel β4 subunit in familial atrial fibrillation.
        Int J Mol Med. 2013; 32: 144-150
        • Darbar D.
        • Kannankeril P.J.
        • Donahue B.S.
        • et al.
        Cardiac sodium channel (SCN5A) variants associated with atrial fibrillation.
        Circulation. 2008; 117: 1927-1935
        • Makiyama T.
        • Akao M.
        • Shizuta S.
        • et al.
        A novel SCN5A gain-of-function mutation M1875T associated with familial atrial fibrillation.
        J Am Coll Cardiol. 2008; 52: 1326-1334
        • Jabbari J.
        • Olesen M.S.
        • Yuan L.
        • et al.
        Common and rare variants in SCN10A modulate the risk of atrial fibrillation.
        Circ Cardiovasc Genet. 2015; 8: 64-73
        • Savio-Galimberti E.
        • Weeke P.
        • Muhammad R.
        • et al.
        SCN10A/Nav1.8 modulation of peak and late sodium currents in patients with early onset atrial fibrillation.
        Cardiovasc Res. 2014; 104: 355-363
        • Olson T.M.
        • Alekseev A.E.
        • Moreau C.
        • et al.
        KATP channel mutation confers risk for vein of Marshall adrenergic atrial fibrillation.
        Nat Clin Pract Cardiovasc Med. 2007; 4: 110-116
        • Macri V.
        • Mahida S.N.
        • Zhang M.L.
        • et al.
        A novel trafficking-defective HCN4 mutation is associated with early-onset atrial fibrillation.
        Heart Rhythm. 2014; 11: 1055-1062
        • Christophersen I.E.
        • Olesen M.S.
        • Liang B.
        • et al.
        Genetic variation in KCNA5: impact on the atrial-specific potassium current IKur in patients with lone atrial fibrillation.
        Eur Heart J. 2013; 34: 1517-1525
        • Olson T.M.
        • Alekseev A.E.
        • Liu X.K.
        • et al.
        Kv1.5 channelopathy due to KCNA5 loss-of-function mutation causes human atrial fibrillation.
        Hum Mol Genet. 2006; 15: 2185-2191
        • Yang Y.
        • Li J.
        • Lin X.
        • et al.
        Novel KCNA5 loss-of-function mutations responsible for atrial fibrillation.
        J Hum Genet. 2009; 54: 277-283
        • Olesen M.S.
        • Refsgaard L.
        • Holst A.G.
        • et al.
        A novel KCND3 gain-of-function mutation associated with early-onset of persistent lone atrial fibrillation.
        Cardiovasc Res. 2013; 98: 488-495
        • Olesen M.S.
        • Bentzen B.H.
        • Nielsen J.B.
        • et al.
        Mutations in the potassium channel subunit KCNE1 are associated with early-onset familial atrial fibrillation.
        BMC Med Genet. 2012; 13: 24
        • Yang Y.
        • Xia M.
        • Jin Q.
        • et al.
        Identification of a KCNE2 gain-of-function mutation in patients with familial atrial fibrillation.
        Am J Hum Genet. 2004; 75: 899-905
        • Lundby A.
        • Ravn L.S.
        • Svendsen J.H.
        • et al.
        KCNE3 mutation V17M identified in a patient with lone atrial fibrillation.
        Cell Physiol Biochem. 2008; 21: 47-54
        • Mann S.A.
        • Otway R.
        • Guo G.
        • et al.
        Epistatic effects of potassium channel variation on cardiac repolarization and atrial fibrillation risk.
        J Am Coll Cardiol. 2012; 59: 1017-1025
        • Ravn L.S.
        • Aizawa Y.
        • Pollevick G.D.
        • et al.
        Gain of function in IKs secondary to a mutation in KCNE5 associated with atrial fibrillation.
        Heart Rhythm. 2008; 5: 427-435
        • Hong K.
        • Bjerregaard P.
        • Gussak I.
        • et al.
        Short QT syndrome and atrial fibrillation caused by mutation in KCNH2.
        J Cardiovasc Electrophysiol. 2005; 16: 394-396
        • Sinner M.F.
        • Pfeufer A.
        • Akyol M.
        • et al.
        The non-synonymous coding IKr-channel variant KCNH2-K897T is associated with atrial fibrillation: results from a systematic candidate gene-based analysis of KCNH2 (HERG).
        Eur Heart J. 2008; 29: 907-914
        • Xia M.
        • Jin Q.
        • Bendahhou S.
        • et al.
        A Kir2.1 gain-of-function mutation underlies familial atrial fibrillation.
        Biochem Biophys Res Commun. 2005; 332: 1012-1019
        • Calloe K.
        • Ravn L.S.
        • Schmitt N.
        • et al.
        Characterizations of a loss-of-function mutation in the Kir3.4 channel subunit.
        Biochem Biophys Res Commun. 2007; 364: 889-895
        • Yamada N.
        • Asano Y.
        • Fujita M.
        • et al.
        Mutant KCNJ3 and KCNJ5 Potassium channels as novel molecular targets in bradyarrhythmias and atrial fibrillation.
        Circulation. 2019; 139: 2157-2169
        • Delaney J.T.
        • Muhammad R.
        • Blair M.A.
        • et al.
        A KCNJ8 mutation associated with early repolarization and atrial fibrillation.
        Europace. 2012; 14: 1428-1432
        • Bartos D.C.
        • Anderson J.B.
        • Bastiaenen R.
        • et al.
        A KCNQ1 mutation causes a high penetrance for familial atrial fibrillation.
        J Cardiovasc Electrophysiol. 2013; 24: 562-569
        • Das S.
        • Makino S.
        • Melman Y.F.
        • et al.
        Mutation in the S3 segment of KCNQ1 results in familial lone atrial fibrillation.
        Heart Rhythm. 2009; 6: 1146-1153
        • Otway R.
        • Vandenberg J.I.
        • Guo G.
        • et al.
        Stretch-sensitive KCNQ1 mutation A link between genetic and environmental factors in the pathogenesis of atrial fibrillation?.
        J Am Coll Cardiol. 2007; 49: 578-586
        • Weeke P.
        • Muhammad R.
        • Delaney J.T.
        • et al.
        Whole-exome sequencing in familial atrial fibrillation.
        Eur Heart J. 2014; 35: 2477-2483
        • Yang Y.Q.
        • Wang M.Y.
        • Zhang X.L.
        • et al.
        GATA4 loss-of-function mutations in familial atrial fibrillation.
        Clin Chim Acta. 2011; 412: 1825-1830
        • Gu J.Y.
        • Xu J.H.
        • Yu H.
        • et al.
        Novel GATA5 loss-of-function mutations underlie familial atrial fibrillation.
        Clinics (Sao Paulo). 2012; 67: 1393-1399
        • Li J.
        • Liu W.D.
        • Yang Z.L.
        • et al.
        Novel GATA6 loss-of-function mutation responsible for familial atrial fibrillation.
        Int J Mol Med. 2012; 30: 783-790
        • Yuan F.
        • Qiu X.B.
        • Li R.G.
        • et al.
        A novel NKX2-5 loss-of-function mutation predisposes to familial dilated cardiomyopathy and arrhythmias.
        Int J Mol Med. 2015; 35: 478-486
        • Wang J.
        • Zhang D.F.
        • Sun Y.M.
        • et al.
        NKX2-6 mutation predisposes to familial atrial fibrillation.
        Int J Mol Med. 2014; 34: 1581-1590
        • Wang J.
        • Zhang D.F.
        • Sun Y.M.
        • et al.
        A novel PITX2c loss-of-function mutation associated with familial atrial fibrillation.
        Eur J Med Genet. 2014; 57: 25-31
        • Tsai C.T.
        • Hsieh C.S.
        • Chang S.N.
        • et al.
        Next-generation sequencing of nine atrial fibrillation candidate genes identified novel de novo mutations in patients with extreme trait of atrial fibrillation.
        J Med Genet. 2015; 52: 28-36
        • Thibodeau I.L.
        • Xu J.
        • Li Q.
        • et al.
        Paradigm of genetic mosaicism and lone atrial fibrillation: physiological characterization of a connexin 43-deletion mutant identified from atrial tissue.
        Circulation. 2010; 122: 236-244
        • Yang Y.Q.
        • Zhang X.L.
        • Wang X.H.
        • et al.
        Connexin40 nonsense mutation in familial atrial fibrillation.
        Int J Mol Med. 2010; 26: 605-610
        • Gollob M.H.
        • Jones D.L.
        • Krahn A.D.
        • et al.
        Somatic mutations in the connexin 40 gene (GJA5) in atrial fibrillation.
        N Engl J Med. 2006; 354: 2677-2688
        • Beavers D.L.
        • Wang W.
        • Ather S.
        • et al.
        Mutation E169K in junctophilin-2 causes atrial fibrillation due to impaired RyR2 stabilization.
        J Am Coll Cardiol. 2013; 62: 2010-2019
        • Pan H.
        • Richards A.A.
        • Zhu X.
        • et al.
        A novel mutation in LAMIN A/C is associated with isolated early-onset atrial fibrillation and progressive atrioventricular block followed by cardiomyopathy and sudden cardiac death.
        Heart Rhythm. 2009; 6: 707-710
        • Müller II,
        • Melville D.B.
        • Tanwar V.
        • et al.
        Functional modeling in zebrafish demonstrates that the atrial-fibrillation-associated gene GREM2 regulates cardiac laterality, cardiomyocyte differentiation and atrial rhythm.
        Dis Model Mech. 2013; 6: 332-341
        • Ren X.
        • Xu C.
        • Zhan C.
        • et al.
        Identification of NPPA variants associated with atrial fibrillation in a Chinese GeneID population.
        Clin Chim Acta. 2010; 411: 481-485
        • Zhang X.
        • Chen S.
        • Yoo S.
        • et al.
        Mutation in nuclear pore component NUP155 leads to atrial fibrillation and early sudden cardiac death.
        Cell. 2008; 135: 1017-1027
        • Zhabyeyev P.
        • Hiess F.
        • Wang R.
        • et al.
        S4153R is a gain-of-function mutation in the cardiac Ca(2+) release channel ryanodine receptor associated with catecholaminergic polymorphic ventricular tachycardia and paroxysmal atrial fibrillation.
        Can J Cardiol. 2013; 29: 993-996
        • Li Q.
        • Huang H.
        • Liu G.
        • et al.
        Gain-of-function mutation of Nav1.5 in atrial fibrillation enhances cellular excitability and lowers the threshold for action potential firing.
        Biochem Biophys Res Commun. 2009; 380: 132-137
        • Yang Y.Q.
        • Li L.
        • Wang J.
        • et al.
        GATA6 loss-of-function mutation in atrial fibrillation.
        Eur J Med Genet. 2012; 55: 520-526
        • Gundlund A.
        • Olesen J.B.
        • Peterson E.D.
        • et al.
        Familial clustering of atrial fibrillation and comparative longitudinal outcomes of familial and non-familial atrial fibrillation.
        J Comp Eff Res. 2017; https://doi.org/10.2217/cer-2016-0088
        • Christophersen I.E.
        • Budtz-Jorgensen E.
        • Olesen M.S.
        • et al.
        Familial atrial fibrillation predicts increased risk of mortality: a study in Danish twins.
        Circ Arrhythm Electrophysiol. 2013; 6: 10-15
        • Gudbjartsson D.F.
        • Arnar D.O.
        • Helgadottir A.
        • et al.
        Variants conferring risk of atrial fibrillation on chromosome 4q25.
        Nature. 2007; 448: 353-357
        • Franco D.
        • Campione M.
        The role of Pitx2 during cardiac development. Linking left-right signaling and congenital heart diseases.
        Trends Cardiovasc Med. 2003; 13: 157-163
        • Ye J.
        • Tucker N.R.
        • Weng L.C.
        • et al.
        A functional variant associated with atrial fibrillation regulates PITX2c Expression through TFAP2a.
        Am J Hum Genet. 2016; 99: 1281-1291
        • Nadadur R.D.
        • Broman M.T.
        • Boukens B.
        • et al.
        Pitx2 modulates a Tbx5-dependent gene regulatory network to maintain atrial rhythm.
        Sci Transl Med. 2016; 8: 354ra115
        • Ihida-Stansbury K.
        • McKean D.M.
        • Gebb S.A.
        • et al.
        Paired-related homeobox gene Prx1 is required for pulmonary vascular development.
        Circ Res. 2004; 94: 1507-1514
        • Tucker N.R.
        • Dolmatova E.V.
        • Lin H.
        • et al.
        Diminished PRRX1 expression is associated with increased risk of atrial fibrillation and shortening of the cardiac action potential.
        Circ Cardiovasc Genet. 2017; 10: e001902
        • Ellinor P.T.
        • Lunetta K.L.
        • Glazer N.L.
        • et al.
        Common variants in KCNN3 are associated with lone atrial fibrillation.
        Nat Genet. 2010; 42: 240-244
        • Zhang X.D.
        • Timofeyev V.
        • Li N.
        • et al.
        Critical roles of a small conductance Ca2⁺-activated K⁺ channel (SK3) in the repolarization process of atrial myocytes.
        Cardiovasc Res. 2014; 101: 317-325
        • Roselli C.
        • Chaffin M.D.
        • Weng L.C.
        • et al.
        Multi-ethnic genome-wide association study for atrial fibrillation.
        Nat Genet. 2018; 50: 1225-1233
        • Nielsen J.B.
        • Thorolfsdottir R.B.
        • Fritsche L.G.
        • et al.
        Biobank-driven genomic discovery yields new insight into atrial fibrillation biology.
        Nat Genet. 2018; 50: 1234-1239
        • Benjamin E.J.
        • Rice K.M.
        • Arking D.E.
        • et al.
        Variants in ZFHX3 are associated with atrial fibrillation in individuals of European ancestry.
        Nat Genet. 2009; 41: 879-881
        • Lubitz S.A.
        • Lunetta K.L.
        • Lin H.
        • et al.
        Novel genetic markers associate with atrial fibrillation risk in Europeans and Japanese.
        J Am Coll Cardiol. 2014; 63: 1200-1210
        • Sinner M.F.
        • Tucker N.R.
        • Lunetta K.L.
        • et al.
        Integrating genetic, transcriptional, and functional analyses to identify 5 novel genes for atrial fibrillation.
        Circulation. 2014; 130: 1225-1235
        • Tsai C.T.
        • Hsieh C.S.
        • Chang S.N.
        • et al.
        Genome-wide screening identifies a KCNIP1 copy number variant as a genetic predictor for atrial fibrillation.
        Nat Commun. 2016; 7: 10190
        • Christophersen I.E.
        • Rienstra M.
        • Roselli C.
        • et al.
        Large-scale analyses of common and rare variants identify 12 new loci associated with atrial fibrillation.
        Nat Genet. 2017; 49: 946-952
        • Low S.K.
        • Takahashi A.
        • Ebana Y.
        • et al.
        Identification of six new genetic loci associated with atrial fibrillation in the Japanese population.
        Nat Genet. 2017; 49: 953-958
        • Lee J.Y.
        • Kim T.H.
        • Yang P.S.
        • et al.
        Korean atrial fibrillation network genome-wide association study for early-onset atrial fibrillation identifies novel susceptibility loci.
        Eur Heart J. 2017; 38: 2586-2594
        • Thorolfsdottir R.B.
        • Sveinbjornsson G.
        • Sulem P.
        • et al.
        A missense variant in PLEC increases risk of atrial fibrillation.
        J Am Coll Cardiol. 2017; 70: 2157-2168
        • Nielsen J.B.
        • Fritsche L.G.
        • Zhou W.
        • et al.
        Genome-wide study of atrial fibrillation identifies seven risk loci and highlights biological pathways and regulatory elements involved in cardiac development.
        Am J Hum Genet. 2018; 102: 103-115
        • van Ouwerkerk A.F.
        • Bosada F.M.
        • van Duijvenboden K.
        • et al.
        Identification of atrial fibrillation associated genes and functional non-coding variants.
        Nat Commun. 2019; 10: 4755
        • Deshmukh A.
        • Barnard J.
        • Sun H.
        • et al.
        Left atrial transcriptional changes associated with atrial fibrillation susceptibility and persistence.
        Circ Arrhythm Electrophysiol. 2015; 8: 32-41
        • Xiong Q.
        • Proietti M.
        • Senoo K.
        • et al.
        Asymptomatic versus symptomatic atrial fibrillation: a systematic review of age/gender differences and cardiovascular outcomes.
        Int J Cardiol. 2015; 191: 172-177
        • Sanna T.
        • Diener H.C.
        • Passman R.S.
        • et al.
        Cryptogenic stroke and underlying atrial fibrillation.
        N Engl J Med. 2014; 370: 2478-2486
        • Choi S.H.
        • Jurgens S.J.
        • Weng L.C.
        • et al.
        Monogenic and polygenic contributions to atrial fibrillation risk: results from a national biobank.
        Circ Res. 2020; 126: 200-209
        • Lubitz S.A.
        • Yin X.
        • Lin H.J.
        • et al.
        Genetic risk prediction of atrial fibrillation.
        Circulation. 2017; 135: 1311-1320
        • Weng L.C.
        • Preis S.R.
        • Hulme O.L.
        • et al.
        Genetic predisposition, clinical risk factor burden, and lifetime risk of atrial fibrillation.
        Circulation. 2018; 137: 1027-1038