Advertisement

Basic Principles of Hemodynamics in Pacing

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cardiac Electrophysiology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lassers B.W.
        • Anderton J.L.
        • George M.
        • et al.
        Hemodynamic effects of artificial pacing in complete heart block complicating acute myocardial infarction.
        Circulation. 1968; 38: 308-323https://doi.org/10.1161/01.cir.38.2.308
        • Sowton E.
        Hemodynamic studies in patients with artificial pacemakers.
        Br Heart J. 1964; 26: 737-746https://doi.org/10.1136/hrt.26.6.737
        • Buckingham T.A.
        • Janosik D.L.
        • Pearson A.C.
        Pacemaker hemodynamics: clinical implications.
        Prog Cardiovasc Dis. 1992; 34: 347-366https://doi.org/10.1016/0033-0620(92)90039-3
        • Reiter M.J.
        • Hindman M.C.
        Hemodynamic effects of acute atrioventricular sequential pacing in patients with left ventricular dysfunction.
        Am J Cardiol. 1982; 49: 687-692https://doi.org/10.1016/0002-9149(82)91947-6
        • Hartzler G.O.
        • Maloney J.D.
        • Curtis J.J.
        • et al.
        Hemodynamic benefits of atrioventricular sequential pacing after cardiac surgery.
        Am J Cardiol. 1977; 40: 232-236https://doi.org/10.1016/0002-9149(77)90013-3
        • Cazeau S.
        • Ritter P.
        • Bakdach S.
        • et al.
        Four chamber pacing in dilated cardiomyopathy.
        Pacing Clin Electrophysiol. 1994; 17: 1974-1979https://doi.org/10.1111/j.1540-8159.1994.tb03783.x
        • Auricchio A.
        • Stellbrink C.
        • Sack S.
        • et al.
        • Pacing Therapies in Congestive Heart Failure (PATH-CHF) Study Group
        Long-term clinical effect of hemodynamically optimized cardiac resynchronization therapy in patients with heart failure and ventricular conduction delay.
        J Am Coll Cardiol. 2002; 39: 2026-2033https://doi.org/10.1016/s0735-1097(02)01895-8
        • Cleland J.G.
        • Daubert J.C.
        • Erdmann E.
        • et al.
        The effect of cardiac resynchronization on morbidity and mortality in heart failure.
        N Engl J Med. 2005; 352: 1539-1549https://doi.org/10.1056/NEJMoa050496
        • Arnold A.D.
        • Shun-Shin M.J.
        • Keene D.
        • et al.
        His resynchronization versus biventricular pacing in patients with heart failure and left bundle branch block.
        J Am Coll Cardiol. 2018; 72: 3112-3122https://doi.org/10.1016/j.jacc.2018.09.073
        • Houston B.A.
        • Sturdivant J.L.
        • Yu Y.
        • et al.
        Acute biventricular hemodynamic effects of cardiac resynchronization therapy in right bundle branch block.
        Heart Rhythm. 2018; https://doi.org/10.1016/j.hrthm.2018.05.017
        • Thibault B.
        • Dubuc M.
        • Khairy P.
        • et al.
        Acute haemodynamic comparison of multisite and biventricular pacing with a quadripolar left ventricular lead.
        Europace. 2013; 15: 984-991https://doi.org/10.1093/europace/eus435
        • Sterliński M.
        • Sokal A.
        • Lenarczyk R.
        • et al.
        In heart failure patients with left bundle branch block single lead MultiSpot left ventricular pacing does not improve acute hemodynamic response to conventional biventricular pacing. A multicenter prospective, interventional, non-randomized study.
        PLoS One. 2016; 11: e0154024https://doi.org/10.1371/journal.pone.0154024
        • Manisty C.H.
        • Al-Hussaini A.
        • Unsworth B.
        • et al.
        The acute effects of changes to AV delay on BP and stroke volume: potential implications for design of pacemaker optimization protocols.
        Circ Arrhythm Electrophysiol. 2012; 5: 122-130https://doi.org/10.1161/CIRCEP.111.964205
        • Kyriacou A.
        • Pabari P.A.
        • Whinnett Z.I.
        • et al.
        Fully automatable, reproducible, noninvasive simple plethysmographic optimization: proof of concept and potential for implantability.
        Pacing Clin Electrophysiol. 2012; 35: 948-960https://doi.org/10.1111/j.1540-8159.2012.03435.x
        • Pabari P.A.
        • Willson K.
        • Stegemann B.
        • et al.
        When is an optimization not an optimization? Evaluation of clinical implications of information content (signal-to-noise ratio) in optimization of cardiac resynchronization therapy, and how to measure and maximize it.
        Heart Fail Rev. 2011; 16: 277-290https://doi.org/10.1007/s10741-010-9203-5
        • Stegemann B.
        • Francis D.P.
        Atrioventricular and interventricular delay optimization and response quantification in biventricular pacing: arrival of reliable clinical algorithms and research protocols, and how to distinguish them from unreliable counterparts.
        Europace. 2012; 14: 1679-1683https://doi.org/10.1093/europace/eus242
        • Whinnett Z.I.
        • Francis D.P.
        • Denis A.
        • et al.
        Comparison of different invasive hemodynamic methods for AV delay optimization in patients with cardiac resynchronization therapy: implications for clinical trial design and clinical practice.
        Int J Cardiol. 2013; 168: 2228-2237https://doi.org/10.1016/j.ijcard.2013.01.216
        • Whinnett Z.I.
        • Davies J.E.
        • Willson K.
        • et al.
        Determination of optimal atrioventricular delay for cardiac resynchronization therapy using acute non-invasive blood pressure.
        Europace. 2006; 8: 358-366https://doi.org/10.1093/europace/eul017
        • Whinnett Z.I.
        • Nott G.
        • Davies J.E.
        • et al.
        Maximizing efficiency of alternation algorithms for hemodynamic optimization of the AV delay of cardiac resynchronization therapy.
        Pacing Clin Electrophysiol. 2011; 34: 217-225https://doi.org/10.1111/j.1540-8159.2010.02933.x
        • Shun-Shin M.J.
        • Miyazawa A.A.
        • Keene D.
        • et al.
        How to deliver personalized cardiac resynchronization therapy through the precise measurement of the acute hemodynamic response: insights from the iSpot trial.
        J Cardiovasc Electrophysiol. 2019; 30: 1610-1619https://doi.org/10.1111/jce.14001
        • Francis D.P.
        How to reliably deliver narrow individual-patient error bars for optimization of pacemaker AV or VV delay using a “pick-the-highest” strategy with hemodynamic measurements.
        Int J Cardiol. 2013; 163: 221-225https://doi.org/10.1016/j.ijcard.2012.03.128
        • Whinnett Z.I.
        • Davies J.E.
        • Willson K.
        • et al.
        Hemodynamic effects of changes in atrioventricular and interventricular delay in cardiac resynchronisation therapy show a consistent pattern: analysis of shape, magnitude and relative importance of atrioventricular and interventricular delay.
        Heart. 2006; 92: 1628-1634https://doi.org/10.1136/hrt.2005.080721
        • Porciani M.C.
        • Dondina C.
        • Macioce R.
        • et al.
        Echocardiographic examination of atrioventricular and interventricular delay optimization in cardiac resynchronization therapy.
        Am J Cardiol. 2005; 95: 1108-1110https://doi.org/10.1016/j.amjcard.2005.01.028
        • Stockburger M.
        • Fateh-Moghadam S.
        • Nitardy A.
        • et al.
        Optimization of cardiac resynchronization guided by Doppler echocardiography: hemodynamic improvement and intraindividual variability with different pacing configurations and atrioventricular delays.
        Europace. 2006; 8: 881-886https://doi.org/10.1093/europace/eul088
        • Thomas D.E.
        • Yousef Z.R.
        • Fraser A.G.
        A critical comparison of echocardiographic measurements used for optimizing cardiac resynchronization therapy: stroke distance is best.
        Eur J Heart Fail. 2009; 11: 779-788https://doi.org/10.1093/eurjhf/hfp086
        • Gold M.R.
        • Niazi I.
        • Giudici M.
        • et al.
        A prospective comparison of AV delay programming methods for hemodynamic optimization during cardiac resynchronization therapy.
        J Cardiovasc Electrophysiol. 2007; 18: 490-496https://doi.org/10.1111/j.1540-8167.2007.00770.x
        • Vanderheyden M.
        • De Backer T.
        • Rivero-Ayerza M.
        • et al.
        Tailored echocardiographic interventricular delay programming further optimizes left ventricular performance after cardiac resynchronization therapy.
        Heart Rhythm. 2005; 2: 1066-1072https://doi.org/10.1016/j.hrthm.2005.07.016
        • Cardiocases
        Sorin algorithm. In: Cardiocases.
        (Available at:) (October 3, 2021)
        • Delnoy P.P.
        • Ritter P.
        • Naegele H.
        • et al.
        Association between frequent cardiac resynchronization therapy optimization and long-term clinical response: a post hoc analysis of the Clinical Evaluation on Advanced Resynchronization (CLEAR) pilot study.
        Europace. 2013; 15: 1174-1181https://doi.org/10.1093/europace/eut034
        • Ruschitzka F.
        • Abraham W.T.
        • Singh J.P.
        • et al.
        Cardiac-resynchronization therapy in heart failure with a narrow QRS complex.
        N Engl J Med. 2013; 369: 1395-1405https://doi.org/10.1056/NEJMoa1306687
        • Keene D.
        • Shun-Shin M.J.
        • Arnold A.D.
        • et al.
        Quantification of electromechanical coupling to prevent inappropriate implantable cardioverter-defibrillator shocks.
        JACC Clin Electrophysiol. 2019; 5: 705-715https://doi.org/10.1016/j.jacep.2019.01.025