Advertisement

Pacing Optimized by Left Ventricular dP/dtmax

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cardiac Electrophysiology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sieniewicz B.J.
        • Gould J.
        • Porter B.
        • et al.
        Understanding non-response to cardiac resynchronisation therapy: common problems and potential solutions.
        Heart Fail Rev. 2019; 24: 41-54
        • Duckett S.G.
        • Ginks M.
        • Shetty A.K.
        • et al.
        Invasive acute hemodynamic response to guide left ventricular lead implantation predicts chronic remodeling in patients undergoing cardiac resynchronization therapy.
        J Am Coll Cardiol. 2011; 58: 1128-1136
        • Sohal M.
        • Hamid S.
        • Perego G.
        • et al.
        A multicenter prospective randomized controlled trial of cardiac resynchronization therapy guided by invasive dP/dt.
        Heart Rhythm O2. 2021; 2: 19-27
        • Niederer S.
        • Walker C.
        • Crozier A.
        • et al.
        The impact of beat-to-beat variability in optimising the acute hemodynamic response in cardiac resynchronisation therapy.
        Clin Trials Regul Sci Cardiol. 2015; 12: 18-22
        • Whinnett Z.I.
        • Francis D.P.
        • Denis A.
        • et al.
        Comparison of different invasive hemodynamic methods for AV delay optimization in patients with cardiac resynchronization therapy: implications for clinical trial design and clinical practice.
        Int J Cardiol. 2013; 168: 2228-2237
        • van Gelder B.M.
        • Meijer A.
        • Bracke F.A.
        Stimulation rate and the optimal interventricular interval during cardiac resynchronization therapy in patients with chronic atrial fibrillation.
        Pacing Clin Electrophysiol. 2008; 31: 569-574
        • Thibault B.
        • Dubuc M.
        • Karst E.
        • et al.
        Design of an acute dP/dt hemodynamic measurement protocol to isolate cardiac effect of pacing.
        J Card Fail. 2014; 20: 365-372
        • Pabari P.A.
        • Willson K.
        • Stegemann B.
        • et al.
        When is an optimization not an optimization? Evaluation of clinical implications of information content (signal-to-noise ratio) in optimization of cardiac resynchronization therapy, and how to measure and maximize it.
        Heart Fail Rev. 2011; 16: 277-290
        • Tissot C.
        • Singh Y.
        • Sekarski N.
        Echocardiographic evaluation of ventricular function-for the neonatologist and pediatric intensivist.
        Front Pediatr. 2018; 6: 1-12
        • Bargiggia G.S.
        • Bertucci C.
        • Recusani F.
        • et al.
        A new method for estimating left ventricular dP/dt by continuous wave Doppler-echocardiography. Validation studies at cardiac catheterization.
        Circulation. 1989; 80: 1287-1292
        • Oguz E.
        • Dagdeviren B.
        • Bilsel T.
        • et al.
        Echocardiographic prediction of long-term response to biventricular pacemaker in severe heart failure.
        Eur J Heart Fail. 2002; 4: 83-90
        • de Roest G.J.
        • Allaart C.P.
        • Kleijn S.A.
        • et al.
        Prediction of long-term outcome of cardiac resynchronization therapy by acute pressure-volume loop measurements.
        Eur J Heart Fail. 2013; 15: 299-307
        • Donahue T.
        • Niazi I.
        • Leon A.
        • et al.
        Acute and chronic response to CRT in narrow QRS patients.
        Journal of Cardiovascular Translational Research. 2012; 5 (In this issue): 232-241https://doi.org/10.1007/s12265-011-9338-3
        • Niazi I.
        • Kiemen J.O.A.N.N.
        • Yong P.
        • et al.
        Hemodynamic superiority of dual-site left ventricular stimulation over conventional biventricular stimulation in heart failure patients.
        The Journal of Innovations in Cardiac Rhythm Management. 2011; 2: 412-418
        • Gold M.R.
        • Niazi I.
        • Giudici M.
        • et al.
        A prospective comparison of AV delay programming methods for hemodynamic optimization during cardiac resynchronization therapy.
        J Cardiovasc Electrophysiol. 2007; 18: 490-496
        • Ruschitzka F.
        • Abraham W.T.
        • Singh J.P.
        • et al.
        Cardiac-resynchronization therapy in heart failure with narrow QRS complexes.
        N Engl J Med. 2013; 369: 1395-1405
        • Tournoux F.B.
        • Alabiad C.
        • Fan D.
        • et al.
        Echocardiographic measures of acute haemodynamic response after cardiac resynchronization therapy predict long-term clinical outcome.
        Eur Heart J. 2007; 28: 1143-1148
        • Suzuki H.
        • Shimano M.
        • Yoshida Y.
        • et al.
        Maximum derivative of left ventricular pressure predicts cardiac mortality after cardiac resynchronization therapy.
        Clin Cardiol. 2010; 33https://doi.org/10.1002/clc.20683
        • Bogaard M.D.
        • Houthuizen P.
        • Bracke F.A.
        • et al.
        Baseline left ventricular dP/dt max rather than the acute improvement in dP/dt max predicts clinical outcome in patients with cardiac resynchronization therapy.
        Eur J Heart Fail. 2011; 13: 1126-1132
        • Butter C.
        • Auricchio A.
        • Stellbrink C.
        • et al.
        Effect of resynchronization therapy stimulation site on the systolic function of heart failure patients.
        Circulation. 2001; 104: 3026-3029
        • Gold M.R.
        • Auricchio A.
        • Hummel J.D.
        • et al.
        Comparison of stimulation sites within left ventricular veins on the acute hemodynamic effects of cardiac resynchronization therapy.
        Heart Rhythm. 2005; 2: 376-381
        • de Roest G.J.
        • Allaart C.P.
        • de Haan S.
        • et al.
        Effects of QRS duration and pacing location on pressure-volume loop evaluation of cardiac resynchronization therapy in end-stage heart failure.
        Am J Cardiol. 2011; 108: 1581-1588
        • Stockinger J.
        • Staier K.
        • Schiebeling-RÖmer J.
        • et al.
        Acute hemodynamic effects of right and left ventricular lead positions during the implantation of cardiac resynchronization therapy defibrillators.
        Pacing Clin Electrophysiol. 2011; 34: 1537-1543
        • Zanon F.
        • Baracca E.
        • Pastore G.
        • et al.
        Multipoint pacing by a left ventricular quadripolar lead improves the acute hemodynamic response to CRT compared with conventional biventricular pacing at any site.
        Heart Rhythm. 2015; 12: 975-981
        • Kass D.A.
        • Chen C.H.
        • Curry C.
        • et al.
        Improved left ventricular mechanics from acute VDD pacing in patients with dilated cardiomyopathy and ventricular conduction delay.
        Circulation. 1999; 99: 1567-1573
        • Auricchio A.
        • Stellbrink C.
        • Block M.
        • et al.
        Effect of pacing chamber and atrioventricular delay on acute systolic function of paced patients with congestive heart failure.
        Circulation. 1999; 99: 2993-3001
        • van Gelder B.M.
        • Bracke F.A.
        • van der Voort P.H.
        • et al.
        Optimal sensed atrio-ventricular interval determined by paced QRS morphology.
        Pacing Clin Electrophysiol. 2007; 30: 476-481
        • Kurzidim K.
        • Reinke H.
        • Sperzel J.
        • et al.
        Invasive optimization of cardiac resynchronization therapy: role of sequential biventricular and left ventricular pacing.
        Pacing Clin Electrophysiol. 2005; 28: 754-761
        • van Gelder B.M.
        • Meijer A.
        • Bracke F.A.
        The optimized V-V interval determined by interventricular conduction times versus invasive measurement by LVdP/dtMAX.
        J Cardiovasc Electrophysiol. 2008; 19: 939-944
        • Jansen A.H.M.
        • Bracke F.A.
        • van Dantzig J.M.
        • et al.
        Correlation of echo-Doppler optimization of atrioventricular delay in cardiac resynchronization therapy with invasive hemodynamics in patients with heart failure secondary to ischemic or idiopathic dilated cardiomyopathy.
        Am J Cardiol. 2006; 97: 552-557
        • Morales M.A.
        • Startari U.
        • Panchetti L.
        • et al.
        Atrioventricular delay optimization by Doppler-derived left ventricular dP/dt improves 6-month outcome of resynchronized patients.
        Pacing Clin Electrophysiol. 2006; 29: 564-568
        • Ellenbogen K.A.
        • Gold M.R.
        • Meyer T.E.
        • et al.
        Primary results from the SmartDelay determined AV optimization: a comparison to other AV delay methods used in cardiac resynchronization therapy (SMART-AV) trial: a randomized trial comparing empirical, echocardiography- guided, and algorithmic atrioventricular delay programming in cardiac resynchronization therapy.
        Circulation. 2010; 122: 2660-2668
        • Starling R.C.
        • Krum H.
        • Bril S.
        • et al.
        Impact of a novel adaptive optimization algorithm on 30-day readmissions. Evidence from the adaptive CRT trial.
        JACC Heart Fail. 2015; 3: 565-572
        • Varma N.
        • Hu Y.
        • Connolly A.T.
        • et al.
        Gain in real-world cardiac resynchronization therapy efficacy with SyncAV dynamic optimization: heart failure hospitalizations and costs.
        Heart Rhythm. 2021; https://doi.org/10.1016/j.hrthm.2021.05.006
        • Rinaldi C.A.
        • Burri H.
        • Thibault B.
        • et al.
        A review of multisite pacing to achieve cardiac resynchronization therapy.
        Europace. 2014; 17: 7-17
        • Thibault B.
        • Dubuc M.
        • Khairy P.
        • et al.
        Acute haemodynamic comparison of multisite and biventricular pacing with a quadripolar left ventricular lead.
        Europace. 2013; 15: 984-991
        • Pappone C.
        • Ćalović Ž.
        • Vicedomini G.
        • et al.
        Multipoint left ventricular pacing improves acute hemodynamic response assessed with pressure-volume loops in cardiac resynchronization therapy patients.
        Heart Rhythm. 2014; 11: 394-401
        • Umar F.
        • Taylor R.J.
        • Stegemann B.
        • et al.
        Haemodynamic effects of cardiac resynchronization therapy using single-vein, three-pole, multipoint left ventricular pacing in patients with ischaemic cardiomyopathy and a left ventricular free wall scar: the MAESTRO study.
        Europace. 2016; 18: 1227-1234
        • Zanon F.
        • Marcantoni L.
        • Baracca E.
        • et al.
        Optimization of left ventricular pacing site plus multipoint pacing improves remodeling and clinical response to cardiac resynchronization therapy at 1 year.
        Heart Rhythm. 2016; 13: 1644-1651
        • Mehta V.S.
        • Elliott M.K.
        • Sidhu B.S.
        • et al.
        Multipoint pacing for cardiac resynchronisation therapy in patients with heart failure: a systematic review and meta-analysis.
        J Cardiovasc Electrophysiol. 2021; 32: 2577-2589
        • Rogers D.P.S.
        • Lambiase P.D.
        • Lowe M.D.
        • et al.
        A randomized double-blind crossover trial of triventricular versus biventricular pacing in heart failure.
        Eur J Heart Fail. 2012; 14: 495-505
        • Leclercq C.
        • Gadler F.
        • Kranig W.
        • et al.
        A randomized comparison of triple-site versus dual-site ventricular stimulation in patients with congestive heart failure.
        J Am Coll Cardiol. 2008; 51: 1455-1462
        • Bordachar P.
        • Gras D.
        • Clementy N.
        • et al.
        Clinical impact of an additional left ventricular lead in cardiac resynchronization therapy nonresponders: the V3 trial.
        Heart Rhythm. 2018; 15: 870-876
        • Gould J.
        • Claridge S.
        • Jackson T.
        • et al.
        Standard care versus TRIVEntricular pacing in Heart Failure (STRIVE HF): a prospective multicenter randomized control trial of triventricular pacing versus conventional biventricular pacing in patients with heart failure and intermediate QRS LBBB.
        Europace. 2021; (Accepted (In press))
        • Sohal M.
        • Shetty A.
        • Niederer S.
        • et al.
        Mechanistic insights into the benefits of multisite pacing in cardiac resynchronization therapy: the importance of electrical substrate and rate of left ventricular activation.
        Heart Rhythm. 2015; 12: 2449-2457
        • Jackson T.
        • Lenarczyk R.
        • Sterlinski M.
        • et al.
        Left ventricular scar and the acute hemodynamic effects of multivein and multipolar pacing in cardiac resynchronization.
        IJC Heart and Vasculature. 2018; 19: 14-19
        • Ploux S.
        • Strik M.
        • van Hunnik A.
        • et al.
        Acute electrical and hemodynamic effects of multisite left ventricular pacing for cardiac resynchronization therapy in the dyssynchronous canine heart.
        Heart Rhythm. 2014; 11: 119-125
        • Heckman L.I.B.
        • Kuiper M.
        • Anselme F.
        • et al.
        Evaluating multisite pacing strategies in cardiac resynchronization therapy in the preclinical setting.
        Heart Rhythm O2. 2020; 1: 111-119
        • Sieniewicz B.J.
        • Betts T.R.
        • James S.
        • et al.
        Real-world experience of leadless left ventricular endocardial cardiac resynchronization therapy: a multicenter international registry of the WiSE-CRT pacing system.
        Heart Rhythm. 2020; 17: 1291-1297
        • Spragg D.D.
        • Dong J.
        • Fetics B.J.
        • et al.
        Optimal left ventricular endocardial pacing sites for cardiac resynchronization therapy in patients with ischemic cardiomyopathy.
        J Am Coll Cardiol. 2010; 56: 774-781
        • Derval N.
        • Steendijk P.
        • Gula L.J.
        • et al.
        Optimizing hemodynamics in heart failure patients by systematic screening of left ventricular pacing sites. the lateral left ventricular wall and the coronary sinus are rarely the best sites.
        J Am Coll Cardiol. 2010; 55: 566-575
        • Padeletti L.
        • Pieragnoli P.
        • Ricciardi G.
        • et al.
        Acute hemodynamic effect of left ventricular endocardial pacing in cardiac resynchronization therapy: assessment by pressure-volume loops.
        Circ Arrhythmia Electrophysiol. 2012; 5: 460-467
        • Shetty A.K.
        • Sohal M.
        • Chen Z.
        • et al.
        A comparison of left ventricular endocardial, multisite, and multipolar epicardial cardiac resynchronization: an acute haemodynamic and electroanatomical study.
        Europace. 2014; 16: 873-879
        • Behar J.M.
        • Jackson T.
        • Hyde E.
        • et al.
        Optimized left ventricular endocardial stimulation is superior to optimized epicardial stimulation in ischemic patients with poor response to cardiac resynchronization therapy: a combined magnetic resonance imaging, electroanatomic contact mapping, and hemodynamic study to target endocardial lead placement.
        JACC Clin Electrophysiol. 2016; 2: 799-809
        • Hyde E.R.
        • Behar J.M.
        • Claridge S.
        • et al.
        Beneficial effect on cardiac resynchronization from left ventricular endocardial pacing is mediated by early access to high conduction velocity tissue: electrophysiological simulation study.
        Circ Arrhythmia Electrophysiol. 2015; 8: 1164-1172
        • Sieniewicz B.J.
        • Behar J.M.
        • Gould J.
        • et al.
        Guidance for optimal site selection of a leadless left ventricular endocardial electrode improves acute hemodynamic response and chronic remodeling.
        JACC Clin Electrophysiol. 2018; 4: 860-868
        • Elliott M.
        • Jacon P.
        • Sidhu B.S.
        • et al.
        Technical feasibility of leadless left bundle branch area pacing for cardiac resynchronisation: a case series.
        Eur Heart J Case Rep. 2021; 5 (Accepted (In press)): ytab379
        • Arnold A.D.
        • Shun-Shin M.J.
        • Keene D.
        • et al.
        His resynchronization versus biventricular pacing in patients with heart failure and left bundle branch block.
        J Am Coll Cardiol. 2018; 72: 3112-3122
        • Salden F.C.W.M.
        • Luermans J.G.L.M.
        • Westra S.W.
        • et al.
        Short-term hemodynamic and electrophysiological effects of cardiac resynchronization by left ventricular septal pacing.
        J Am Coll Cardiol. 2020; 75: 347-359
        • Upadhyay G.A.
        • Cherian T.
        • Shatz D.Y.
        • et al.
        Intracardiac delineation of septal conduction in left bundle-branch block patterns.
        Circulation. 2019; 139: 1876-1888
        • Elliott M.K.
        • Mehta V.
        • Sidhu B.S.
        • et al.
        Electrocardiographic imaging of His bundle, left bundle branch, epicardial, and endocardial left ventricular pacing to achieve cardiac resynchronization therapy.
        HeartRhythm Case Rep. 2020; 6: 460-463
        • Elliott M.
        • Strocchi M.
        • Sidhu B.
        • et al.
        Acute hemodynamic response of epicardial and endocardial cardiac resynchronization therapy, His bundle pacing and left bundle branch pacing.
        EP Europace. 2021; 23: 2021