Advertisement

Pathophysiology of Typical Atrial Flutter

Published:August 24, 2022DOI:https://doi.org/10.1016/j.ccep.2022.05.003

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cardiac Electrophysiology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kuzmin V.S.
        • et Kamensky A.A.
        The molecular and cellular mechanisms of heart pacemaker development in vertebrates.
        Mosc Univ Biol Sci Bull. 2021; 76: 147-164
        • Kistler P.M.
        • Chieng D.
        • Tonchev I.R.
        • et al.
        P-Wave morphology in focal atrial tachycardia: an updated algorithm to predict site of origin.
        JACC Clin Electrophysiol. 2021; 7: 1547-1556
        • Mayer A.G.
        Rhythmical pulsation in scyphomedusae. Carrwgie Inst. Wash., 1906 (Pub. No. 47)
        • Mayer A.G.
        Rhythmical pulsation in scyphomedusae: II.
        Carwgic Inst. Wash, 1908
        • Mines G.R.
        On circulating excitations in heart muscles and their possible relation to tachycardia and fibrillation.
        Trans Roy Soc Gan. 1914; 8: 43
        • Mines G.R.
        On dynamic equilibrium in the heart.
        J Physiol. 1913; 46: 349-383
        • Lewis T.
        • Feil H.S.
        • Stround W.D.
        Observations upon flutter and fibrillation: Part II: the nature of auricular flutter.
        Heart. 1920; 7: 191
        • Rosenblueth A.
        • Garcia-Ramos J.
        Studies on flutter and fibrillation. II. The influence of artificial obstacles on experimental auricular flutter.
        Am Heart J. 1947; 33: 677-684
        • Frame L.H.
        • Page R.L.
        • Hoffman B.F.
        Atrial reentry around an anatomic barrier with a partially refractory excitable gap. A canine model of atrial flutter.
        Circ Res. 1986; 58: 495-511
        • Allessie M.A.
        • Bonke F.I
        • Schopman F.J.
        Circus movement in rabbit antral muscle as a mechanism of tachycardia. III. The "leading circle” concept: a new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle.
        Circ Res. 1977; 41: 9-18
        • Tai C.-T.
        • Chen S-A.
        Conduction barriers of atrial flutter: relation to the anatomy.
        Pacing Clin Electrophysiol. 2008; 31: 1335-1342
        • Jeffrey E.
        • Kalman J.M
        • Lesh M.D
        Conduction barriers in human atrial flutter: correlation of electrophysiology and anatomy.
        J Cardiovasc Electrophysiol. 1996; 7: 1112-1126
        • Olshansky B.
        • Okumura K.
        • Hess P.G.
        • et al.
        Demonstration of an area of slow conduction in human atrial flutter.
        J Am Coll Cardiol. 1990; 16: 1639-1648
        • Waki K.
        • Saito T.
        • Becker A.E.
        • et al.
        Right atrial flutter isthmus revisited: normal anatomy favours non-uniform anisotropic conduction.
        J Cardiovasc Electrophysiol. 2000; 11: 90-94
        • Spach M.S.
        • Miller W.T.
        • Dolber P.C
        • et al.
        The functional role of structural complexities in the propagation of depolarization in the atrium of the dog. Cardiac conduction disturbances due to discontinuities of effective axial resistivity.
        Circ Res. 1982; 50: 175-191
        • Spach M.S.
        • Josephson M.E
        Initialing reentry: the role of non-uniform anisotropy in small circuits.
        J Cardiovasc Electrophysiol. 1994; 5: 182-209
        • Spach M.S.
        • Dolber P.C.
        Relating extracellular potentials and their derivatives in anisotropic propagation at a microscopic level in human cardiac muscle. Evidence for electrical uncoupling of side- to-side fiber connections with increasing age.
        Circ Res. 1986; 58: 356-371
        • Schumacher B.
        • Jung W.
        • Schmidt H.
        • et al.
        Transverse conduction capabilities of the crista terminalis in patients with atrial flutter and atrial fibrillation.
        J Am Coll Cardiol. 1999; 34: 363-373
        • Arenal A.
        • Almendral J.
        • Alday J.M
        • et al.
        Rate-dependent conduction block of the crista terminalis in patients with typical atrial flutter.
        Circulation. 1999; 99: 2771-2778
        • Tai C.T.
        • Chen S.A
        • Yu W.C.
        • et al.
        Conduction properties of the crista terminalis in patients with typical atrial flutter: basis for a line of block in the reentrant circuit.
        J Cardiovasc Electrophysiol. 1998; 9: 811-819
        • Olgin J.E.
        • Kalman J.M
        • Fitzpatrick A.P.
        • et al.
        Role of right atrial endocardial structures as barriers to conduction during human type I atrial flutter.
        Circulation. 1995; 92: 1839-1848
        • Huang J.L.
        • Tai C.T.
        • Liu T.Y.
        • et al.
        High-resolution mapping around the Eustachian ridge during typical atrial flutter.
        J Cardiovasc Electrophysiol. 2006; 17: 1187-1192
        • Nakagawa H.
        • Lazzara R.
        • Khastgir T.
        • et al.
        Role of the tricuspid annulus and the Eustachian valve/ridge on atrial flutter.
        Circulation. 1996; 94: 407-424
        • Matsuo K.
        • Uno K.
        • Khrestian C.M
        • et al.
        Conduction left-to-right and right-to-left across the crista terminalis.
        Am J Physiol Heart Circ Physiol. 2001; 280: H1683-H1691
        • Friedman P.A.
        • Luria D.
        • Fenton A.M
        • et al.
        Global right atrial mapping of human atrial flutter: the presence of posteromedial (sinus venosa region) functional block and double potentials: a study in biplane fluoroscopy and intracardiac echocardiography.
        Circulation. 2000; 101: 1568-1577
        • Cosio F.G.
        • Arribas F.
        • Lopez-Gìl M.
        • et al.
        Atrial flutter mapping and ablation. Studying atrial flutter mechanisms by mapping and entrainment.
        PACE. 1996; 19: 841-853
        • Kalman J.M.
        • Olgin G.E
        • Saxon L.A.
        • et al.
        Activation and entrainment mapping defines the tricuspid annulus as the anterior barrier in typical atrial flutter.
        Circulation. 1996; 94: 398-406
        • Tai C.-T.
        • Chen S.A
        Electrophysiological mechanisms of atrial flutter.
        J Chin Med Assoc. 2009; 72: 60-67
        • Tai C.T.
        • Chen S.A.
        • Chiang C.E.
        • et al.
        Characterization of low right atrial isthmus as the slow conduction zone and pharmacological target in typical atrial flutter.
        Circulation. 1997; 96: 2601-2611
        • Feld G.K.
        • Mollerus M.
        • Birgersdotter-Green U.
        • et al.
        Conduction velocity in the tricuspid valve-inferior vena cava isthmus is slower in patients with type I atrial flutter compared to those without a history of atrial flutter.
        J Cardiovasc Electrophysiol. 1997; 8: 1338-1348
        • Lin J.L.
        • Lai L.
        • Lin L.
        • et al.
        Electrophysiological determinant for induction of isthmus dependent counterclockwise and clockwise atrial flutter in humans.
        Heart. 1999; 81: 73-81
        • Morita N.
        • Kobayashi Y.
        • Ivasaki Y.K.
        • et al.
        Pronounced effect of procainamide on clockwise right atrial isthmus conduction compared with counterclockwise conduction: possible mechanism of the greater incidence of common atrial flutter during antiarrhythmic therapy.
        J Cardiovasc Electrophysiol. 2002; 13: 212-222
        • Frame L.H.
        • Page R.L.
        • Boyden P.A
        • et al.
        Circus movement in the canine atrium around the tricuspid ring during experimental atrial flutter and during reentry in vitro.
        Circulation. 1987; 76: 1155-1175
        • Arribas F.
        • Lòpez-Gil M.
        • Cosio F.G.
        • et al.
        The upper link of human common atrial flutter circuit: definition by multiple endocardial recordings during entrainment.
        PACE Pacing Clin Electrophysiol. 1997; 20: 2924-2929
        • Olgin J.E.
        • Kalman J.M
        • Lesh M.D.
        • et al.
        Conduction barriers in human atrial flutter: correlation of electrophysiology and anatomy.
        J Cardiovasc Electrophysiol. 1996; 7: 1112-1126
        • Tai C.-T.
        • Huang J.L.
        • Lee P.C.
        • et al.
        High-resolution mapping around the crista terminalis during typical atrial flutter: new insights into mechanisms.
        J Cardiovasc Electrophysiol. 2004; 15: 406-414
        • Schilling R.J.
        • Peters N.S.
        • Goldberger J.
        • et al.
        Characterization of the anatomy and conduction velocities of the human right atrial flutter circuit determined by noncontact mapping.
        J Am Coll Cardiol. 2001; 38: 385-393
        • Chen J.
        • Hoff P.I.
        • Erga K.S.
        • et al.
        Global right atrial mapping delineates double posterior lines of block in patients with typical atrial flutter: a study using a three-dimensional noncontact mapping system.
        J Cardiovasc Electrophysiol. 2003; 14: 1041-1048
        • Hiroshige Y.
        • Misumi I.
        • Fukushima H.
        • et al.
        Conduction properties of the crista terminalis and its influence on the right atrial activation sequence in patients with typical atrial flutter.
        Pacing Clin Electrophysiol. 2002; 25: 132-141
        • Mizumaki K.
        • Fujiki A.
        • Nagasawa H.
        • et al.
        Relation between transverse conduction capability and the anatomy of the crista terminalis in patients with atrial flutter and atrial fibrillation: analysis by intracardiac echocardiography.
        Circ J. 2002; 66: 1113-1118
        • Ohkubo K.
        • Watanabe I.
        • Okumura Y.
        • et al.
        Anatomic and electrophysiological differences between chronic and paroxysmal atrial flutter: intracardiac echocardiographic analysis.
        Pacing Clin Electrophysiol. 2008; 31: 432-437
        • Morita N.
        • Kobayashi Y.
        • Horie T.
        • et al.
        The undetermined geometrical factors contributing to the transverse conduction block of the crista terminalis Pacing.
        Clin Electrophysiol. 2009; 32: 868-878
        • De La Fuente D.
        • Sasyniuk B.
        • Moe G.K.
        • et al.
        Conduction through a narrow isthmus in isolated canine atrial tissue. A model of the WPW syndrome.
        Circulation. 1971; 44: 803-809
        • Mendez C.
        • Mueller W.J.
        • Urguiaga X.
        • et al.
        Propagation of impulses across the Purkinje fiber-muscle junctions in the dog heart.
        Circ Res. 1970; 26: 135-150
        • Saffitz J.E.
        • Kanter H.L.
        • Green K.G.
        • et al.
        Tissue-specific determinants of anisotropic conduction velocity in canine atrial and ventricular myocardium.
        Circ Res. 1994; 74: 1065-1070
        • Matsuyama T.A.
        • Inoue S.
        • Kobayashi Y.
        • et al.
        Anatomical diversity and age-related histological changes in the human right atrial posterolateral wall.
        Europace. 2004; 6: 307-315
        • Rodriguez L.-M.
        • Timmermans C.
        • Nabar A.
        • et al.
        Biatrial activation in isthmus-dependent atrial flutter.
        Circulation. 2001; 104: 2545-2550
        • Ndrepepa G.
        • Zrenner B.
        • Deisenhofer, I.
        • et al.
        Relationship between surface electrocardiogram characteristics and endocardial activation sequence in patients with typical atrial flutter.
        Z Kardiol. 2000; 89: 527-537
        • Okumura K.
        • Plumb V.J.
        • Pagé P.L.
        • et al.
        Atrial activation sequence during atrial flutter in the canine pericarditis model and its effects on the polarity of the flutter wave in the electrocardiogram.
        J Am Coll Cardiol. 1991; 17: 509-518
        • Schoels W.
        • Offner B
        • Brachmann J.
        • et al.
        Circus movement atrial flutter in the canine sterile pericarditis model. Relation of characteristics of the surface electrocardiogram and conduction properties of the reentrant pathway.
        J Am Coll Cardiol. 1994; 23: 799-808
        • Rodriguez E.
        • Callans D.J.
        • Gottlieb C.D.
        • et al.
        Right atrial activation with coronary sinus pacing: in-sight into patterns of interatrial conduction.
        J Am Coll Cardiol. 1999; 33: 151A
        • Roithinger F.X.
        • Cheng J.
        • SippensGroenewegen A.
        • et al.
        Use of electroanatomical mapping to delineate trans-septal atrial conduction in humans.
        Circulation. 1999; 100: 1791-1797
        • Saoudi N.
        • Nair M.
        • Abdelazziz A.
        • et al.
        Electrocardiographic patterns and results of radiofrequency catheter ablation of clockwise type I atrial flutter.
        J Cardiovasc Electrophysiol. 1996; 7: 931-942
        • Cosio F.G.
        • Lopez-Gil M.
        • Goicolea A.
        • et al.
        Radiofrequency ablation of the inferior vena cava-tricuspid valve isthmus in common atrial flutter.
        Am J Cardiol. 1993; 71: 705-709
        • Mohanty S.
        • Natale A.
        • Mohanty P.
        • et al.
        Pulmonary vein isolation to reduce future risk of atrial fibrillation in patients undergoing typical flutter ablation: results from a randomized pilot study (REDUCE AF).
        J Cardiovasc Electrophysiol. 2015; 26: 819-825
        • Milliez P.
        • Richardson A.W.
        • Obioha-Ngwu O.
        • et al.
        Variable electrocardiographic characteristics of isthmus-dependent atrial flutter.
        J Am Coll Cardiol. 2002; 40: 1125-1132