Advertisement

Intracardiac Electrogram Targets for Ventricular Tachycardia Ablation

Published:October 26, 2022DOI:https://doi.org/10.1016/j.ccep.2022.06.001

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cardiac Electrophysiology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Al-Khatib S.M.
        • Stevenson W.G.
        • Ackerman M.J.
        • et al.
        2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines and the Heart Rhythm Society.
        Heart Rhythm. 2018; 15: e73-e189
        • Nakahara S.
        • Tung R.
        • Ramirez R.J.
        • et al.
        Characterization of the arrhythmogenic substrate in ischemic and nonischemic cardiomyopathy Implications for catheter ablation of hemodynamically unstable ventricular tachycardia.
        J Am Coll Cardiol. 2010; 55: 2355-2365
        • Glashan C.A.
        • Androulakis A.F.A.
        • Tao Q.
        • et al.
        Whole human heart histology to validate electroanatomical voltage mapping in patients with non-ischaemic cardiomyopathy and ventricular tachycardia.
        Eur Heart J. 2018; 39: 2867-2875
        • Yousuf O.K.
        • Zusterzeel R.
        • Sanders W.
        • et al.
        Trends and outcomes of catheter ablation for ventricular tachycardia in a Community Cohort.
        JACC Clin Electrophysiol. 2018; 4: 1189-1199
        • Nayyar S.
        • Ganesan A.N.
        • Brooks A.G.
        • et al.
        Venturing into ventricular arrhythmia storm: a systematic review and meta-analysis.
        Eur Heart J. 2013; 34: 560-571
        • Martin R.
        • Maury P.
        • Bisceglia C.
        • et al.
        Characteristics of scar-related ventricular tachycardia circuits using ultra-high-density mapping.
        Circ Arrhythm Electrophysiol. 2018; 11: e006569
        • Di Biase L.
        • Burkhardt J.D.
        • Lakkireddy D.
        • et al.
        Ablation of stable VTs versus substrate ablation in ischemic cardiomyopathy: the VISTA randomized multicenter Trial.
        J Am Coll Cardiol. 2015; 66: 2872-2882
        • Nayyar S.
        • Downar E.
        • Bhaskaran A.P.
        • et al.
        Signature signal strategy: electrogram-based ventricular tachycardia mapping.
        Heart Rhythm. 2020; 17: 2000-2009
        • Nayyar S.
        • Wilson L.
        • Ganesan A.N.
        • et al.
        High-density mapping of ventricular scar: a comparison of ventricular tachycardia (VT) supporting channels with channels that do not support VT.
        Circ Arrhythm Electrophysiol. 2014; 7: 90-98
        • Marchlinski F.E.
        • Callans D.J.
        • Gottlieb C.D.
        • et al.
        Linear ablation lesions for control of unmappable ventricular tachycardia in patients with ischemic and nonischemic cardiomyopathy.
        Circulation. 2000; 101: 1288-1296
        • Tschabrunn C.M.
        • Zado E.S.
        • Schaller R.D.
        • et al.
        Isolated critical epicardial arrhythmogenic substrate abnormalities in patients with arrhythmogenic right ventricular cardiomyopathy and ventricular tachycardia.
        Heart Rhythm. 2021; 19: 538-545
        • Josephson M.E.
        • Anter E.
        Substrate mapping for ventricular tachycardia Assumptions and Misconceptions.
        JACC Clin Electrophysiol. 2015; 1: 341-352
        • Takigawa M.
        • Relan J.
        • Martin R.
        • et al.
        Effect of bipolar electrode orientation on local electrogram properties.
        Heart Rhythm. 2018; 15: 1853-1861
        • Spears D.A.
        • Suszko A.M.
        • Dalvi R.
        • et al.
        Relationship of bipolar and unipolar electrogram voltage to scar transmurality and composition derived by magnetic resonance imaging in patients with nonischemic cardiomyopathy undergoing VT ablation.
        Heart Rhythm. 2012; 9: 1837-1846
        • Venlet J.
        • Piers S.R.D.
        • Kapel G.F.L.
        • et al.
        Unipolar endocardial voltage mapping in the right ventricle: optimal Cutoff values Correcting for Computed Tomography-derived epicardial fat Thickness and their clinical value for substrate delineation.
        Circ Arrhythm Electrophysiol. 2017; 10: e005175
        • Cassidy D.M.
        • Vassallo J.A.
        • Buxton A.E.
        • et al.
        The value of catheter mapping during sinus rhythm to localize site of origin of ventricular tachycardia.
        Circulation. 1984; 69: 1103-1110
        • Fast V.G.
        • Kleber A.G.
        Role of wavefront curvature in propagation of cardiac impulse.
        Cardiovasc Res. 1997; 33: 258-271
        • Dillon S.M.
        • Allessie M.A.
        • Ursell P.C.
        • et al.
        Influences of anisotropic tissue structure on reentrant circuits in the epicardial border zone of subacute canine infarcts.
        Circ Res. 1988; 63: 182-206
        • Spach M.S.
        • Dolber P.C.
        Relating extracellular potentials and their derivatives to anisotropic propagation at a microscopic level in human cardiac muscle. Evidence for electrical uncoupling of side-to-side fiber connections with increasing age.
        Circ Res. 1986; 58: 356-371
        • Jais P.
        • Maury P.
        • Khairy P.
        • et al.
        Elimination of local abnormal ventricular activities: a new end point for substrate modification in patients with scar-related ventricular tachycardia.
        Circulation. 2012; 125: 2184-2196
        • Cassidy D.M.
        • Vassallo J.A.
        • Marchlinski F.E.
        • et al.
        Endocardial mapping in humans in sinus rhythm with normal left ventricles: activation patterns and characteristics of electrograms.
        Circulation. 1984; 70: 37-42
        • Vergara P.
        • Trevisi N.
        • Ricco A.
        • et al.
        Late potentials abolition as an additional Technique for reduction of arrhythmia recurrence in scar related ventricular tachycardia ablation.
        J Cardiovasc Electrophysiol. 2012; 23: 621-627
        • Harada T.
        • Stevenson W.G.
        • Kocovic D.Z.
        • et al.
        Catheter ablation of ventricular tachycardia after myocardial infarction: relation of endocardial sinus rhythm late potentials to the reentry circuit.
        J Am Coll Cardiol. 1997; 30: 1015-1023
        • Schilling R.J.
        • Davies D.W.
        • Peters N.S.
        Characteristics of sinus rhythm electrograms at sites of ablation of ventricular tachycardia relative to all other sites: a noncontact mapping study of the entire left ventricle.
        J Cardiovasc Electrophysiol. 1998; 9: 921-933
        • Kocovic D.
        • Harada T.
        • Friedman P.
        • et al.
        Characteristics of electrograms recorded at reentry circuit sites and bystanders during ventricular tachycardia after myocardial infarction.
        J Am Coll Cardiol. 1999; 34: 381-388
        • Maglaveras N.
        • De Bakker J.M.
        • Van Capelle F.J.
        • et al.
        Activation delay in healed myocardial infarction: a comparison between model and experiment.
        Am J Physiol. 1995; 269: H1441-H1449
        • Rudy Y.
        • Quan W.
        Propagation delays across cardiac gap junctions and their reflection in extracellular potentials: a simulation study.
        J Cardiovasc Electrophysiol. 1991; 2: 299-315
        • Bogun F.
        • Good E.
        • Reich S.
        • et al.
        Isolated potentials during sinus rhythm and pace-mapping within scars as guides for ablation of post-infarction ventricular tachycardia.
        J Am Coll Cardiol. 2006; 47: 2013-2019
        • Ciaccio E.J.
        • Tosti A.C.
        • Scheinman M.M.
        Method to predict isthmus location in ventricular tachycardia Caused by reentry with a double-loop pattern.
        J Cardiovasc Electrophysiol. 2005; 16: 528-536
        • Irie T.
        • Yu R.
        • Bradfield J.S.
        • et al.
        Relationship between sinus rhythm late activation zones and critical sites for scar-related ventricular tachycardia: systematic analysis of isochronal late activation mapping.
        Circ Arrhythm Electrophysiol. 2015; 8: 390-399
        • Anter E.
        • Kleber A.G.
        • Rottmann M.
        • et al.
        Infarct-related ventricular tachycardia: redefining the electrophysiological substrate of the isthmus during sinus rhythm.
        JACC Clin Electrophysiol. 2018; 4: 1033-1048
        • Hood M.A.
        • Pogwizd S.M.
        • Peirick J.
        • et al.
        Contribution of myocardium responsible for ventricular tachycardia to abnormalities detected by analysis of signal-averaged ECGs.
        Circulation. 1992; 86: 1888-1901
        • Kleber A.
        • Rudy Y.
        Basic mechanisms of cardiac impulse propagation and associated arrhythmias.
        Physiol Rev. 2004; 84: 431-488
        • Beheshti M.
        • Nayyar S.
        • Magtibay K.
        • et al.
        Quantifying the determinants of decremental response in critical ventricular tachycardia substrate.
        Comput Biol Med. 2018; 102: 260-266
        • Anter E.
        • Neuzil P.
        • Reddy V.Y.
        • et al.
        Ablation of reentry-vulnerable zones determined by left ventricular activation from multiple directions: a novel approach for ventricular tachycardia ablation: a multicenter study (PHYSIO-VT).
        Circ Arrhythm Electrophysiol. 2020; 13: e008625
        • Tung R.
        • Josephson M.E.
        • Bradfield J.S.
        • et al.
        Directional influences of ventricular activation on myocardial scar characterization: voltage mapping with multiple wavefronts during ventricular tachycardia ablation.
        Circ Arrhythm Electrophysiol. 2016; 9: e004155
        • Nayyar S.
        • Wilson L.
        • Ganesan A.
        • et al.
        Electrophysiologic features of protected channels in late postinfarction patients with and without spontaneous ventricular tachycardia.
        J Interv Card Electrophysiol. 2018; 51: 13-24
        • Nayyar S.
        • Kuklik P.
        • Tomlinson G.
        • et al.
        Differential pacing from two sites to diagnose risk of ventricular arrhythmia and death.
        Pacing Clin Electrophysiol. 2019; 42: 189-200
        • Kucera J.P.
        • Rohr S.
        • Kleber A.G.
        Microstructure, cell-to-cell coupling, and ion currents as determinants of electrical propagation and arrhythmogenesis.
        Circ Arrhythm Electrophysiol. 2017; 10
        • Jackson N.
        • Gizurarson S.
        • Viswanathan K.
        • et al.
        Decrement evoked potential mapping: basis of a mechanistic strategy for ventricular tachycardia ablation.
        Circ Arrhythm Electrophysiol. 2015; 8: 1433-1442
        • Srinivasan N.T.
        • Garcia J.
        • Schilling R.J.
        • et al.
        Multicenter study of dynamic high-density functional substrate mapping improves identification of substrate targets for ischemic ventricular tachycardia ablation.
        JACC Clin Electrophysiol. 2020; 6: 1783-1793
        • de Riva M.
        • Naruse Y.
        • Ebert M.
        • et al.
        Targeting the hidden substrate unmasked by right ventricular extrastimulation improves ventricular tachycardia ablation outcome after myocardial infarction.
        JACC Clin Electrophysiol. 2018; 4: 316-327
        • Kucera J.P.
        • Kléber A.G.
        • Rohr S.
        Slow conduction in cardiac tissue, II: effects of branching tissue geometry.
        Circ Res. 1998; 83: 795-805
        • Kucera J.P.
        • Rudy Y.
        Mechanistic insights into very slow conduction in branching cardiac tissue: a model study.
        Circ Res. 2001; 89: 799-806
        • Downar E.
        • Saito J.
        • Doig J.C.
        • et al.
        Endocardial mapping of ventricular tachycardia in the intact human ventricle. III. Evidence of multiuse reentry with spontaneous and induced block in portions of reentrant path complex.
        J Am Coll Cardiol. 1995; 25: 1591-1600
        • Nayyar S.
        • Downar E.
        • Beheshti M.
        • et al.
        Information theory to tachycardia Therapy: electrogram entropy predicts diastolic microstructure of reentrant ventricular tachycardia.
        Am J Physiol Heart Circ Physiol. 2018; 316: H134-H144
        • Nayyar S.
        • Kuklik P.
        • Ganesan A.N.
        • et al.
        Development of time- and voltage-domain mapping (V-T-Mapping) to localize ventricular tachycardia channels during sinus rhythm.
        Circ Arrhythm Electrophysiol. 2016; 9: e004050
        • Frontera A.
        • Melillo F.
        • Baldetti L.
        • et al.
        High-density characterization of the ventricular electrical substrate during sinus rhythm in post-myocardial infarction patients.
        JACC Clin Electrophysiol. 2020; 6: 799-811
        • Stevenson W.G.
        • Sager P.T.
        • Natterson P.D.
        • et al.
        Relation of pace mapping QRS configuration and conduction delay to ventricular tachycardia reentry circuits in human infarct scars.
        J Am Coll Cardiol. 1995; 26: 481-488
        • Soejima K.
        • Stevenson W.
        • Maisel W.
        • et al.
        Electrically unexcitable scar mapping based on pacing threshold for identification of the reentry critical isthmus: Feasibility for guiding ventricular tachycardia ablation.
        Circulation. 2002; 106: 1678-1683
        • Miller J.M.
        • Marchlinski F.E.
        • Buxton A.E.
        • et al.
        Relationship between the 12-lead electrocardiogram during ventricular tachycardia and endocardial site of origin in patients with coronary artery disease.
        Circulation. 1988; 77: 759-766
        • Brunckhorst C.B.
        • Delacretaz E.
        • Soejima K.
        • et al.
        Identification of the ventricular tachycardia isthmus after infarction by pace mapping.
        Circulation. 2004; 110: 652-659
        • de Chillou C.
        • Groben L.
        • Magnin-Poull I.
        • et al.
        Localizing the critical isthmus of postinfarct ventricular tachycardia: the value of pace-mapping during sinus rhythm.
        Heart Rhythm. 2014; 11: 175-181
        • Pashakhanloo F.
        • Herzka D.A.
        • Halperin H.
        • et al.
        Role of 3-dimensional architecture of scar and surviving tissue in ventricular tachycardia: insights from high-resolution ex vivo porcine models.
        Circ Arrhythm Electrophysiol. 2018; 11: e006131
        • de Chillou C.
        • Lacroix D.
        • Klug D.
        • et al.
        Isthmus characteristics of reentrant ventricular tachycardia after myocardial infarction.
        Circulation. 2002; 105: 726-731
        • Nishimura T.
        • Upadhyay G.A.
        • Aziz Z.A.
        • et al.
        Circuit determinants of ventricular tachycardia cycle length: characterization of Fast and unstable human ventricular tachycardia.
        Circulation. 2021; 143: 212-226
        • Girouard S.D.
        • Pastore J.M.
        • Laurita K.R.
        • et al.
        Optical mapping in a new Guinea pig model of ventricular tachycardia reveals mechanisms for multiple wavelengths in a single reentrant circuit.
        Circulation. 1996; 93: 603-613
        • Das M.
        • Downar E.
        • Masse S.
        • et al.
        Temporal-component analysis of diastolic electrograms in ventricular tachycardia differentiates nonvulnerable regions of the circuit.
        Heart Rhythm. 2015; 12: 1737-1744
        • Bhaskaran A.
        • Niri A.
        • Azam M.A.
        • et al.
        Safety, efficacy, and monitoring of bipolar radiofrequency ablation in beating myopathic human and healthy swine hearts.
        Heart Rhythm. 2021; 18: 1772-1779
        • Narui R.
        • Tanigawa S.
        • Nakajima I.
        • et al.
        Irrigated needle ablation compared with other advanced ablation Techniques for Failed endocardial ventricular arrhythmia ablation.
        Circ Arrhythm Electrophysiol. 2021; 14: e009817