Advertisement

Catheter Ablation of Ventricular Fibrillation

Published:October 27, 2022DOI:https://doi.org/10.1016/j.ccep.2022.06.002

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cardiac Electrophysiology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Khan R.
        Identifying and understanding the role of pulmonary vein activity in atrial fibrillation.
        Cardiovasc Res. 2004; 64: 387-394
        • Willems S.
        • Klemm H.
        • Rostock T.
        • et al.
        Substrate modification combined with pulmonary vein isolation improves outcome of catheter ablation in patients with persistent atrial fibrillation: a prospective randomized comparison.
        Eur Heart J. 2006; 27: 2871-2878
        • Roten L.
        • Derval N.
        • Jaïs P.
        Catheter ablation for persistent atrial fibrillation: elimination of triggers is not sufficient.
        Circ Arrhythm Electrophysiol. 2012; 5 ([discussion: 32]): 1224-1232
        • Krummen D.E.
        • Ho G.
        • Villongco C.T.
        • et al.
        Ventricular fibrillation: triggers, mechanisms and therapies.
        Future Cardiol. 2016; 12: 373-390
        • Haissaguerre M.
        • Vigmond E.
        • Stuyvers B.
        • et al.
        Ventricular arrhythmias and the His-Purkinje system.
        Nat Rev Cardiol. 2016; 13: 155-166
        • Winfree A.T.
        Spiral waves of chemical activity.
        Science. 1972; 175: 634-636
        • Biktasheva I.V.
        • Biktashev V.N.
        Wave-particle dualism of spiral waves dynamics.
        Phys Rev E Stat Nonlin Soft Matter Phys. 2003; 67: 026221
        • Chen J.
        • Mandapati R.
        • Berenfeld O.
        • et al.
        High-frequency periodic sources underlie ventricular fibrillation in the isolated rabbit heart.
        Circ Res. 2000; 86: 86-93
        • Jalife J.
        Ventricular fibrillation: mechanisms of initiation and maintenance.
        Annu Rev Physiol. 2000; 62: 25-50
        • Gelzer A.R.
        • Koller M.L.
        • Otani N.F.
        • et al.
        Dynamic mechanism for initiation of ventricular fibrillation in vivo.
        Circulation. 2008; 118: 1123-1129
        • Everett THt
        • Wilson E.E.
        • Foreman S.
        • et al.
        Mechanisms of ventricular fibrillation in canine models of congestive heart failure and ischemia assessed by in vivo noncontact mapping.
        Circulation. 2005; 112: 1532-1541
        • Mandapati R.
        • Asano Y.
        • Baxter W.T.
        • et al.
        Quantification of effects of global ischemia on dynamics of ventricular fibrillation in isolated rabbit heart.
        Circulation. 1998; 98: 1688-1696
        • Nanthakumar K.
        • Jalife J.
        • Massé S.
        • et al.
        Optical mapping of Langendorff-perfused human hearts: establishing a model for the study of ventricular fibrillation in humans.
        Am J Physiol Heart Circ Physiol. 2007; 293: H875-H880
        • Leenhardt A.
        • Glaser E.
        • Burguera M.
        • et al.
        Short-coupled variant of torsade de pointes. A new electrocardiographic entity in the spectrum of idiopathic ventricular tachyarrhythmias.
        Circulation. 1994; 89: 206-215
        • Saliba W.
        • Abul Karim A.
        • Tchou P.
        • et al.
        Ventricular fibrillation: ablation of a trigger?.
        J Cardiovasc Electrophysiol. 2002; 13: 1296-1299
        • Yap J.
        • Tan V.H.
        • Hsu L.F.
        • et al.
        Catheter ablation of ventricular fibrillation storm in a long QT syndrome genotype carrier with normal QT interval.
        Singapore Med J. 2013; 54: e1-e4
        • Haïssaguerre M.
        • Shoda M.
        • Jaïs P.
        • et al.
        Mapping and ablation of idiopathic ventricular fibrillation.
        Circulation. 2002; 106: 962-967
        • Knecht S.
        • Sacher F.
        • Wright M.
        • et al.
        Long-term follow-up of idiopathic ventricular fibrillation ablation: a multicenter study.
        J Am Coll Cardiol. 2009; 54: 522-528
        • Haïssaguerre M.
        • Shah D.C.
        • Jaïs P.
        • et al.
        Role of Purkinje conducting system in triggering of idiopathic ventricular fibrillation.
        Lancet. 2002; 359: 677-678
        • Van Herendael H.
        • Zado E.S.
        • Haqqani H.
        • et al.
        Catheter ablation of ventricular fibrillation: importance of left ventricular outflow tract and papillary muscle triggers.
        Heart Rhythm. 2014; 11: 566-573
        • Haïssaguerre M.
        • Duchateau J.
        • Dubois R.
        • et al.
        Idiopathic ventricular fibrillation: role of Purkinje system and microstructural myocardial abnormalities.
        JACC Clin Electrophysiol. 2020; 6: 591-608
        • Santoro F.
        • Di Biase L.
        • Hranitzky P.
        • et al.
        Ventricular fibrillation triggered by PVCs from papillary muscles: clinical features and ablation.
        J Cardiovasc Electrophysiol. 2014; 25: 1158-1164
        • Sadek M.M.
        • Benhayon D.
        • Sureddi R.
        • et al.
        Idiopathic ventricular arrhythmias originating from the moderator band: electrocardiographic characteristics and treatment by catheter ablation.
        Heart Rhythm. 2015; 12: 67-75
        • Surget E.
        • Cheniti G.
        • Ramirez F.D.
        • et al.
        Sex differences in the origin of Purkinje ectopy-initiated idiopathic ventricular fibrillation.
        Heart Rhythm. 2021; 18: 1647-1654
        • Kumar N.
        • Aksoy I.
        • Phan K.
        • et al.
        Coronary spasm during cardiac electrophysiological study following isoproterenol infusion.
        Interv Med Appl Sci. 2014; 6: 183-186
        • Tadros R.
        • Nannenberg E.A.
        • Lieve K.V.
        • et al.
        Yield and pitfalls of ajmaline testing in the evaluation of unexplained cardiac arrest and sudden unexplained death: single-center experience with 482 families.
        JACC Clin Electrophysiol. 2017; 3: 1400-1408
        • Zehender M.
        • Brugada P.
        • Geibel A.
        • et al.
        Programmed electrical stimulation in healed myocardial infarction using a standardized ventricular stimulation protocol.
        Am J Cardiol. 1987; 59: 578-585
        • Cheniti G.
        • Vlachos K.
        • Meo M.
        • et al.
        Mapping and ablation of idiopathic ventricular fibrillation.
        Front Cardiovasc Med. 2018; 5: 123
        • Bogun F.
        • Taj M.
        • Ting M.
        • et al.
        Spatial resolution of pace mapping of idiopathic ventricular tachycardia/ectopy originating in the right ventricular outflow tract.
        Heart Rhythm. 2008; 5: 339-344
        • Hillsley R.E.
        • Bollacker K.D.
        • Simpson E.V.
        • et al.
        Alteration of ventricular fibrillation by propranolol and isoproterenol detected by epicardial mapping with 506 electrodes.
        J Cardiovasc Electrophysiol. 1995; 6: 471-485
        • Xanthos T.
        • Pantazopoulos I.
        • Demestiha T.
        • et al.
        Epinephrine in ventricular fibrillation: friend or foe? A review for the Emergency Nurse.
        J Emerg Nurs. 2011; 37 ([quiz: 25–6]): 408-412
        • Kohl P.
        • Nesbitt A.D.
        • Cooper P.J.
        • et al.
        Sudden cardiac death by Commotio cordis: role of mechano-electric feedback.
        Cardiovasc Res. 2001; 50: 280-289
        • Trayanova N.A.
        • Constantino J.
        • Gurev V.
        Models of stretch-activated ventricular arrhythmias.
        J Electrocardiol. 2010; 43: 479-485
        • Bode F.
        • Franz M.R.
        • Wilke I.
        • et al.
        Ventricular fibrillation induced by stretch pulse: implications for sudden death due to commotio cordis.
        J Cardiovasc Electrophysiol. 2006; 17: 1011-1017
        • Quinn T.A.
        • Jin H.
        • Lee P.
        • et al.
        Mechanically induced ectopy via stretch-activated cation-nonselective channels is caused by local tissue deformation and results in ventricular fibrillation if triggered on the repolarization wave edge (commotio cordis).
        Circ Arrhythm Electrophysiol. 2017; 10: e004777
        • Riemer T.L.
        • Sobie E.A.
        • Tung L.
        Stretch-induced changes in arrhythmogenesis and excitability in experimentally based heart cell models.
        Am J Physiol. 1998; 275: H431-H442
        • Maor E.
        • Sugrue A.
        • Witt C.
        • et al.
        Pulsed electric fields for cardiac ablation and beyond: a state-of-the-art review.
        Heart Rhythm. 2019; 16: 1112-1120
        • Sugrue A.
        • Vaidya V.
        • Witt C.
        • et al.
        Irreversible electroporation for catheter-based cardiac ablation: a systematic review of the preclinical experience.
        J Interv Card Electrophysiol. 2019; 55: 251-265
        • Livia C.
        • Sugrue A.
        • Witt T.
        • et al.
        Elimination of Purkinje fibers by electroporation reduces ventricular fibrillation vulnerability.
        J Am Heart Assoc. 2018; 7: e009070
        • Sugrue A.
        • Vaidya V.R.
        • Livia C.
        • et al.
        Feasibility of selective cardiac ventricular electroporation.
        PLoS One. 2020; 15: e0229214
        • DeSimone C.V.
        • Asirvatham S.J.
        Purkinje tissue modification and ventricular fibrillation.
        Pacing Clin Electrophysiol. 2019; 42: 1291-1293
        • Berenfeld O.
        • Jalife J.
        Purkinje-muscle reentry as a mechanism of polymorphic ventricular arrhythmias in a 3-dimensional model of the ventricles.
        Circ Res. 1998; 82: 1063-1077
        • Worley S.J.
        • Swain J.L.
        • Colavita P.G.
        • et al.
        Development of an endocardial-epicardial gradient of activation rate during electrically induced, sustained ventricular fibrillation in dogs.
        Am J Cardiol. 1985; 55: 813-820
        • Newton J.C.
        • Smith W.M.
        • Ideker R.E.
        Estimated global transmural distribution of activation rate and conduction block during porcine and canine ventricular fibrillation.
        Circ Res. 2004; 94: 836-842
        • Huang J.
        • Dosdall D.J.
        • Cheng K.A.
        • et al.
        The importance of Purkinje activation in long duration ventricular fibrillation.
        J Am Heart Assoc. 2014; 3: e000495
        • Li L.
        • Jin Q.
        • Dosdall D.J.
        • et al.
        Activation becomes highly organized during long-duration ventricular fibrillation in canine hearts.
        Am J Physiol Heart Circ Physiol. 2010; 298: H2046-H2053
        • Tabereaux P.B.
        • Walcott G.P.
        • Rogers J.M.
        • et al.
        Activation patterns of Purkinje fibers during long-duration ventricular fibrillation in an isolated canine heart model.
        Circulation. 2007; 116: 1113-1119
        • Lin C.
        • Jin Q.
        • Zhang N.
        • et al.
        Endocardial focal activation originating from Purkinje fibers plays a role in the maintenance of long duration ventricular fibrillation.
        Croat Med J. 2014; 55: 121-127
        • Wu T.J.
        • Lin S.F.
        • Hsieh Y.C.
        • et al.
        Repetitive endocardial focal discharges during ventricular fibrillation with prolonged global ischemia in isolated rabbit hearts.
        Circ J. 2009; 73: 1803-1811
        • Panitchob N.
        • Li L.
        • Huang J.
        • et al.
        Endocardial activation Drives activation patterns during long-duration ventricular fibrillation and defibrillation.
        Circ Arrhythm Electrophysiol. 2017; 10: e005562
        • Li L.
        • Zheng X.
        • Dosdall D.J.
        • et al.
        Long-duration ventricular fibrillation exhibits 2 distinct organized states.
        Circ Arrhythm Electrophysiol. 2013; 6: 1192-1199
        • Dosdall D.J.
        • Osorio J.
        • Robichaux R.P.
        • et al.
        Purkinje activation precedes myocardial activation following defibrillation after long-duration ventricular fibrillation.
        Heart Rhythm. 2010; 7: 405-412
        • Tri J.
        • Asirvatham R.
        • DeSimone C.V.
        • et al.
        Intramural conduction system gradients and electrogram regularity during ventricular fibrillation.
        Indian Pacing Electrophysiol J. 2018; 18: 195-200
        • Tabereaux P.B.
        • Dosdall D.J.
        • Ideker R.E.
        Mechanisms of VF maintenance: wandering wavelets, mother rotors, or foci.
        Heart Rhythm. 2009; 6: 405-415
        • Filgueiras-Rama D.
        • Jalife J.
        Structural and functional bases OF cardiac fibrillation. Differences and similarities between atria and ventricles.
        JACC Clin Electrophysiol. 2016; 2: 1-3
        • Zaitsev A.V.
        • Guha P.K.
        • Sarmast F.
        • et al.
        Wavebreak formation during ventricular fibrillation in the isolated, regionally ischemic pig heart.
        Circ Res. 2003; 92: 546-553
        • Davidenko J.M.
        • Pertsov A.V.
        • Salomonsz R.
        • et al.
        Stationary and drifting spiral waves of excitation in isolated cardiac muscle.
        Nature. 1992; 355: 349-351
        • Nair K.
        • Umapathy K.
        • Farid T.
        • et al.
        Intramural activation during early human ventricular fibrillation.
        Circ Arrhythm Electrophysiol. 2011; 4: 692-703
        • Samie F.H.
        • Berenfeld O.
        • Anumonwo J.
        • et al.
        Rectification of the background potassium current: a determinant of rotor dynamics in ventricular fibrillation.
        Circ Res. 2001; 89: 1216-1223
        • Warren M.
        • Guha P.K.
        • Berenfeld O.
        • et al.
        Blockade of the inward rectifying potassium current terminates ventricular fibrillation in the Guinea pig heart.
        J Cardiovasc Electrophysiol. 2003; 14: 621-631
        • Krummen D.E.
        • Hayase J.
        • Morris D.J.
        • et al.
        Rotor stability separates sustained ventricular fibrillation from self-terminating episodes in humans.
        J Am Coll Cardiol. 2014; 63: 2712-2721
        • Damiano Jr., R.J.
        • Smith P.K.
        • Tripp Jr., H.F.
        • et al.
        The effect of chemical ablation of the endocardium on ventricular fibrillation threshold.
        Circulation. 1986; 74: 645-652
        • Dosdall D.J.
        • Tabereaux P.B.
        • Kim J.J.
        • et al.
        Chemical ablation of the Purkinje system causes early termination and activation rate slowing of long-duration ventricular fibrillation in dogs.
        Am J Physiol Heart Circ Physiol. 2008; 295: H883-H889
        • Kim Y.H.
        • Xie F.
        • Yashima M.
        • et al.
        Role of papillary muscle in the generation and maintenance of reentry during ventricular tachycardia and fibrillation in isolated swine right ventricle.
        Circulation. 1999; 100: 1450-1459
        • Pak H.N.
        • Kim G.I.
        • Lim H.E.
        • et al.
        Both Purkinje cells and left ventricular posteroseptal reentry contribute to the maintenance of ventricular fibrillation in open-chest dogs and swine: effects of catheter ablation and the ventricular cut-and-sew operation.
        Circ J. 2008; 72: 1185-1192
        • Krummen D.E.
        • Hayase J.
        • Vampola S.P.
        • et al.
        Modifying ventricular fibrillation by targeted rotor substrate ablation: proof-of-concept from experimental studies to clinical VF.
        J Cardiovasc Electrophysiol. 2015; 26: 1117-1126
        • Maury P.
        • Duchateau J.
        • Rollin A.
        • et al.
        Long-lasting ventricular fibrillation in humans ECG characteristics and effect of radiofrequency ablation.
        Circ Arrhythm Electrophysiol. 2020; 13: e008639
        • Tan N.Y.
        • Christopoulos G.
        • Ladas T.P.
        • et al.
        Regional and temporal variation of ventricular and conduction tissue activity during ventricular fibrillation in canines.
        Circ Arrhythm Electrophysiol. 2021; 14: e010281
        • Shen M.J.
        • Zipes D.P.
        Role of the autonomic nervous system in modulating cardiac arrhythmias.
        Circ Res. 2014; 114: 1004-1021
        • Chiou C.W.
        • Eble J.N.
        • Zipes D.P.
        Efferent vagal innervation of the canine atria and sinus and atrioventricular nodes. The third fat pad.
        Circulation. 1997; 95: 2573-2584
        • Armour J.A.
        • Murphy D.A.
        • Yuan B.X.
        • et al.
        Gross and microscopic anatomy of the human intrinsic cardiac nervous system.
        Anat Rec. 1997; 247: 289-298
        • Manolis A.A.
        • Manolis T.A.
        • Apostolopoulos E.J.
        • et al.
        The role of the autonomic nervous system in cardiac arrhythmias: the neuro-cardiac axis, more foe than friend?.
        Trends Cardiovasc Med. 2021; 31: 290-302
        • Frontera A.
        • Vlachos K.
        • Kitamura T.
        • et al.
        Long-term follow-up of idiopathic ventricular fibrillation in a pediatric population: clinical characteristics, management, and complications.
        J Am Heart Assoc. 2019; 8: e011172
        • Kasanuki H.
        • Ohnishi S.
        • Ohtuka M.
        • et al.
        Idiopathic ventricular fibrillation induced with vagal activity in patients without obvious heart disease.
        Circulation. 1997; 95: 2277-2285
        • Opthof T.
        • Misier A.R.
        • Coronel R.
        • et al.
        Dispersion of refractoriness in canine ventricular myocardium. Effects of sympathetic stimulation.
        Circ Res. 1991; 68: 1204-1215
        • Ng G.A.
        • Brack K.E.
        • Patel V.H.
        • et al.
        Autonomic modulation of electrical restitution, alternans and ventricular fibrillation initiation in the isolated heart.
        Cardiovasc Res. 2007; 73: 750-760
        • Tomaselli G.F.
        • Zipes D.P.
        What causes sudden death in heart failure?.
        Circ Res. 2004; 95: 754-763
        • Barber M.J.
        • Mueller T.M.
        • Henry D.P.
        • et al.
        Transmural myocardial infarction in the dog produces sympathectomy in noninfarcted myocardium.
        Circulation. 1983; 67: 787-796
        • Scherf D.
        • Blumenfeld S.
        • Yildiz M.
        Experimental study on ventricular extrasystoles provoked by vagal stimulation.
        Am Heart J. 1961; 62: 670-675
        • Scherf D.
        • Cohen J.
        • Rafailzadeh M.
        Excitatory effects of carotid sinus pressure. Enhancement of ectopic impulse formation and of impulse conduction.
        Am J Cardiol. 1966; 17: 240-252
        • Amitzur G.
        • Manoach M.
        • Weinstock M.
        The influence of cardiac cholinergic activation on the induction and maintenance of ventricular fibrillation.
        Basic Res Cardiol. 1984; 79: 690-697
        • Meng L.
        • Tseng C.H.
        • Shivkumar K.
        • et al.
        Efficacy of stellate ganglion blockade in managing electrical storm: a systematic review.
        JACC Clin Electrophysiol. 2017; 3: 942-949
        • Odero A.
        • Bozzani A.
        • De Ferrari G.M.
        • et al.
        Left cardiac sympathetic denervation for the prevention of life-threatening arrhythmias: the surgical supraclavicular approach to cervicothoracic sympathectomy.
        Heart Rhythm. 2010; 7: 1161-1165
        • Collura C.A.
        • Johnson J.N.
        • Moir C.
        • et al.
        Left cardiac sympathetic denervation for the treatment of long QT syndrome and catecholaminergic polymorphic ventricular tachycardia using video-assisted thoracic surgery.
        Heart Rhythm. 2009; 6: 752-759
        • Schlaich M.P.
        • Sobotka P.A.
        • Krum H.
        • et al.
        Renal sympathetic-nerve ablation for uncontrolled hypertension.
        N Engl J Med. 2009; 361: 932-934
        • Krum H.
        • Schlaich M.P.
        • Sobotka P.A.
        • et al.
        Percutaneous renal denervation in patients with treatment-resistant hypertension: final 3-year report of the Symplicity HTN-1 study.
        Lancet. 2014; 383: 622-629
        • Ukena C.
        • Bauer A.
        • Mahfoud F.
        • et al.
        Renal sympathetic denervation for treatment of electrical storm: first-in-man experience.
        Clin Res Cardiol. 2012; 101: 63-67
        • Armaganijan L.V.
        • Staico R.
        • Moreira D.A.
        • et al.
        6-Month outcomes in patients with implantable cardioverter-Defibrillators undergoing renal sympathetic denervation for the treatment of refractory ventricular arrhythmias.
        JACC Cardiovasc Interv. 2015; 8: 984-990
        • Zhu C.
        • Hanna P.
        • Rajendran P.S.
        • et al.
        Neuromodulation for ventricular tachycardia and atrial fibrillation: a clinical scenario-based review.
        JACC Clin Electrophysiol. 2019; 5: 881-896