Relationships Between Atrial Flutter and Fibrillation: The Border Zone

Published:August 24, 2022DOI:


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Cardiac Electrophysiology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Zipes D.P.
        • Jalife J.
        • Stevenson W.G.
        Cardiac electrophysiology: from cell to bedside: seventh edition.
        Circulation. 2017;
        • Haïssaguerre M.
        • Jais P.
        • Shah D.C.
        • et al.
        Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins.
        N Engl J Med. 1998; 339: 659-666
        • Wu T.J.
        • Liang K.W.
        • Ting C.T.
        Relation between the rapid focal activation in the pulmonary vein and the maintenance of paroxysmal atrial fibrillation.
        Pacing Clin Electrophysiol. 2001; 24: 902-905
        • Ehrlich J.R.
        • Cha T.J.
        • Zhang L.
        • et al.
        Cellular electrophysiology of canine pulmonary vein cardiomyocytes: action potential and ionic current properties.
        J Physiol. 2003; 551: 801-881
        • Yamaguchi T.
        • Tsuchiya T.
        • Miyamoto K.
        • et al.
        Characterization of non-pulmonary vein foci with an EnSite array in patients with paroxysmal atrial fibrillation.
        Europace. 2010; 12: 1698-1706
        • Nattel S.
        New ideas about atrial fibrillation 50 years on.
        Nature. 2002; 415: 219-226
        • Moe G.K.
        • Rheinboldt W.C.
        • Abildskov J.A.
        A computer model of atrial fibrillation.
        Am Heart J. 1964; 67: 200-220
        • Allessie M.A.
        • Lammers W.E.J.E.P.
        • Bonke F.I.M.
        • et al.
        Experimental evaluation of Moe’s multiple wavelet hypothesis of atrial their role in atrial fibrillation.
        in: Zipes D.P. Jalife J. Cardiac electrophysiology and arrhythmias. Grune and Stratton, Orlando1985: 265-275
        • Lesh M.D.
        • Pring M.
        • Spear J.F.
        Cellular uncoupling can unmask dispersion of action potential duration in ventricular myocardium. A computer modeling study.
        Circ Res. 1989; 65: 1426-1440
        • Chen J.
        • Mandapati R.
        • Berenfeld O.
        • et al.
        Dynamics of wavelets and their role in atrial fibrillation in the isolated sheep heart.
        Cardiovasc Res. 2000; 48: 220-232
        • Hansen B.J.
        • Csepe T.A.
        • Zhao J.
        • et al.
        Maintenance of atrial fibrillation: are reentrant drivers with spatial stability the key?.
        Circ Arrhythm Electrophysiol. 2016; 9: e004398
        • Spach M.S.
        • Dolber P.C.
        Relating extracellular potentials and their derivatives to anisotropic propagation at a microscopic level in human cardiac muscle. Evidence for electrical uncoupling of side-to-side fiber connections with increasing age.
        Circ Res. 1986; 58: 356-371
        • Hansen B.J.
        • Zhao J.
        • Csepe T.A.
        • et al.
        Atrial fibrillation driven by micro-anatomic intramural re-entry revealed by simultaneous sub-epicardial and sub-endocardial optical mapping in explanted human hearts.
        Eur Heart J. 2015; 36: 2390-2401
        • Allessie M.A.
        • Bonke F.I.
        • Schopman F.J.
        Circus movement in rabbit atrial muscle as a mechanism of tachycardia. III. The “leading circle” concept: a new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle.
        Circ Res. 1977; 41: 9-18
        • Winfree A.T.
        Scroll-shaped waves of chemical activity in three dimensions.
        Science. 1973; 181: 937-939
        • Cabo C.
        • Pertsov A.M.
        • Davidenko J.M.
        • et al.
        Vortex shedding as a precursor of turbulent electrical activity in cardiac muscle.
        Biophys J. 1996; 70: 1105-1111
        • Bagliani G.
        • Della Rocca D.G.
        • De Ponti R.
        • et al.
        Ectopic beats: insights from timing and morphology.
        Card Electrophysiol Clin. 2018;
        • Davidenko J.M.
        • Kent P.F.
        • Chialvo D.R.
        • et al.
        Sustained vortex-like waves in normal isolated ventricular muscle.
        Proc Natl Acad Sci U S A. 1990; 87: 8785-8789
        • Mandapati R.
        • Skanes A.
        • Chen J.
        • Berenfeld O.
        • Jalife J.
        Stable microreentrant sources as a mechanism of atrial fibrillation in the isolated sheep heart.
        Circulation. 2000; 101: 194-199
      1. Lazar S, Dixit S, Marchlinski FE, Callans D et alii Presence of Left-to-Right Atrial Frequency Gradient in Paroxysmal but Not Persistent Atrial Fibrillation in Humans Circulation. 2004;110:3181–3186.

        • Hocini M.
        • Nault I.
        • Wright M.
        • et al.
        Disparate evolution of right and left atrial rate during ablation of long-lasting persistent atrial fibrillation.
        J Am Coll Cardiol. 2010; 55: 1007-1016
        • Wijffels M.C.
        • Kirchhof C.J.
        • Dorland R.
        • et al.
        Atrial fibrillation begets atrial fibrillation. A study in Awake Chronically Instrumented Goats.
        Circulation. 1995; 92: 1954-1968
        • Platonov P.G.
        • Mitrofanova L.B.
        • Orshanskaya V.
        • et al.
        Structural abnormalities in atrial walls are associated with presence and persistency of atrial fibrillation but not with age.
        J Am Coll Cardiol. 2011; 58: 2225-2232
        • Derakhchan K.
        • Li D.
        • Courtemanche M.
        • et al.
        Method for simultaneous epicardial and endocardial mapping of in vivo canine heart: application to atrial conduction properties and arrhythmia mechanisms.
        J Cardiovasc Electrophysiol. 2001; 12: 548-555
        • Skanes A.C.
        • Mandapati R.
        • Berenfeld O.
        • et al.
        Spatiotemporal periodicity during atrial fibrillation in the isolated sheep heart.
        Circulation. 1998; 98: 1236-1248
        • Gray R.A.
        • Jalife J.
        • Panfilov A.V.
        • et al.
        Mechanisms of cardiac atrial fibrillation.
        Science. 1995; 270: 1222-1223
        • Cox J.L.
        • Canavan T.E.
        • Schuessler R.B.
        • et al.
        The surgical treatment of atrial fibrillation II. Intraoperative electrophysiologic mapping and description of the electrophysiologic basis of atrial flutter and atrial fibrillation.
        J Thorac Cardiovasc Surg. 1991; 101: 406-426
        • Watson R.M.
        • Josephson M.E.
        Atrial flutter. I. Electrophysiologic substrates and modes of initiation and termination.
        Am J Cardiol. 1980; 45: 732-740
        • Wang Z.
        • Pagé P.
        Nattel S Mechanism of flecainide's antiarrhythmic action in experimental atrial fibrillation.
        Circ Res. 1992; 71: 271-278
        • Reithmann C.
        • Hoffmann E.
        • Spitzlberger G.
        • et al.
        Catheter ablation of atrial flutter due to amiodarone therapy for paroxysmal atrial fibrillation.
        Eur Heart J. 2000; 21: 565-572
        • Waldo A.L.
        • Feld G.K.
        Inter-relationships of atrial fibrillation and atrial flutter mechanisms and clinical implications.
        J Am Coll Cardiol. 2008; 51: 779-786
        • Botteron G.W.
        • Smith J.M.
        Quantitative assessment of the spatial organization of atrial fibrillation in the intact human heart.
        Circulation. 1996; 93: 513-518
        • Narayan S.M.
        • Feld G.K.
        • Hassankhani A.
        Bhargava V quantifying intracardiac organization of atrial arrhythmias using temporospatial phase of the electrocardiogram.
        J Cardiovasc Electrophysiol. 2003; 14: 971-981
        • Konings K.T.S.
        • Kirchhof C.J.H.J.
        • Smeets J.R.L.M.
        • et al.
        High-density mapping of electrically induced atrial fibrillation in humans.
        Circulation. 1994; 89: 1665-1680
        • Nelson R.M.
        • Jenson C.B.
        • Davis R.W.
        Differential atrial arrythmias in cardiac surgical patients.
        J Thorac Cardiovsc Surg. 1969; 58: 581-587
        • Wells J.L.
        • Karp R.B.
        • Mac Lean W.A.H.
        • et al.
        Characterization of atrial fibrillation in man: studies following open heart surgery.
        Pacing Clin Electophysiol. 1978; 1: 426-438
        • Horvath G.
        • Goldberger J.J.
        • Kadish A.H.
        Simultaneous occurrence of atrial fibrillation and atrial flutter.
        J Cardiovasc Electrophysiol. 2000; 11: 849-858
        • Roithinger F.X.
        • Sipphnsgrohnewegen A.
        • Karch M.R.
        • et al.
        Organized activation during atrial fibrillation in man; endocardial and electrocardiographic manifestations.
        J Cardiovasc Electrophysiol. 1998; 9: 451-461
        • Jais P.
        • Haissaguerre M.
        • Shah D.C.
        • et al.
        Regional disparities of endocardial atrial activation in paroxysmal atrial fibrillation.
        PACE. 1996; 19: 1998-2003
        • Rosenblueth A.
        • Garcia-Ramos J.
        Studies on flutter and fibrillation. II. The influence of artificial obstacles on experimental auricular flutter.
        Am Heart J. 1947; 33: 677-684
        • Shimizu A.
        • Nozaki A.
        • Rudy Y.
        • et al.
        Onset of induced atrial flutter in the canine pericarditis model.
        J Am Coll Cardiol. 1991; 17: 1223-1234
        • Ortiz J.
        • Niwano S.
        • Abe H.
        • et al.
        Mapping the conversion of atrial flutter to atrial fibrillation and atrial fibrillation to atrial flutter insights into mechanisms.
        Circ Res. 1994; 74: 882-894
        • Uno K.
        • Kumagai K.
        • Khrestian C.
        • et al.
        New insights regarding the atrial flutter reentrant circuit in the canine sterile pericarditis model.
        J Am Coll Cardiol. 1997; 229 (abstract): 254A,
        • Friedman P.A.
        • Luria D.
        • Fenton A.M.
        • et al.
        Global right atrial mapping of human atrial flutter: the presence of posteromedial (Sinus Venosa Region) functional block and double potentials. A study in biplane fluoroscopy and intracardiac echocardiography.
        Circulation. 2000; 101: 1568-1577
        • Huang J.L.
        • Tai C.-T.
        • Lin Y.-J.
        • Huang B.-H.
        • et al.
        Substrate mapping to detect abnormal atrial endocardium with slow conduction in patients with atypical right atrial flutter.
        J Am Coll Cardiol. 2006; 48: 492-498
        • Tai C.T.
        • Chen S.A.
        • Chiang C.E.
        • et al.
        Characterization of low right atrial isthmus as the slow conduction zone and pharmacological target in typical atrial flutter.
        Circulation. 1997; 96: 2601-2611
        • Moreira W.
        • Timmermans C.
        • Wellens H.J.J.
        • et al.
        Can common-type atrial flutter be a sign of an arrhythmogenic substrate in paroxysmal atrial fibrillation? Clinical and ablative consequences in patients with coexistent paroxysmal atrial fibrillation/atrial flutter.
        Circulation. 2007; 116: 2786-2792
        • Kumar S.
        • Kalman J.M.
        • Sutherland F.
        • et al.
        Atrial fibrillation inducibility in the absence of structural heart disease or clinical atrial fibrillation. Critical dependence on induction protocol, inducibility definition, and number of inductions.
        Circ Arrhythmia Electrophysiol. 2012; 5: 531-536
        • Bettoni M.
        • Zimmermann M.
        Autonomic tone variations before the onset of paroxysmal atrial fibrillation.
        Circulation. 2002; 105: 2753-2759
        • Yang Y.
        • Mangat I.
        • Glatter K.A.
        • et al.
        Mechanism of conversion of atypical right atrial flutter to atrial fibrillation.
        Am J Cardiol. 2003; 91: 46-52
        • Yang Y.
        • Cheng J.
        • Bochoeyer A.
        • et al.
        Atypical right atrial flutter patterns.
        Circulation. 2001; 103: 3092-3098
        • Yu W.C.
        • Chen S.A.
        • Lee S.H.
        • et al.
        Tachycardia-induced change of atrial refractory period in humans: rate dependency and effects of antiarrhythmic drugs.
        Circulation. 1998; 97: 2331-2337
        • Matsuo K.
        • Tomita Y.
        • Khrestian CM,Waldo A.L.
        A new mechanism description of the electrophysiologic basis of atrial flutter and atrial of sustained atrial fibrillation: studies in the sterile pericarditis fibrillation.
        J Thorac Cardiovasc Surg. 1991; 101 (model. Circulation 1998;98:I-209, abstract): 406-426
        • Schuessler R.B.
        • Grayson T.M.
        • Bromberg B.I.
        • et al.
        Cholinergically mediated tachyarrhythmias induced by a single extrastimulus in the isolated canine right atrium.
        Circ Res. 1992; 71: 1254-1267
        • Hsieh M.H.
        • Tai C.T.
        • Tsai C.F.
        • et al.
        Mechanism of spontaneous transition from typical atrial flutter to atrial fibrillation: role of ectopic atrial fibrillation foci.
        PACE. 2001; 24: 46-52
        • Moe G.K.
        • Abildskov J.A.
        Atrial fibrillation as a self-sustaining arrhythmia independent of focal discharge.
        Am Heart J. 1959;
        • Ajijola O.A.
        • Wisco J.J.
        • Lambert H.W.
        • et al.
        Extracardiac neural remodeling in humans with cardiomyopathy.
        Circ Arrhythm Electrophysiol. 2012; 5: 1010-1116
        • Sparks P.B.
        • Jayaprakash S.
        • Vohra J.K.
        • et al.
        Electrical remodeling of the atria associated with paroxysmal and chronic atrial flutter.
        Circulation. 2000; 102: 1807-1813
        • Wu T.J.
        • Yashima M.
        • Xie F.
        • et al.
        Role of pectinate muscle bundles in the generation and maintenance of intra-atrial reentry: potential implications for the mechanism of conversion between atrial fibrillation and atrial flutter.
        Circ Res. 1998; 83: 448-462
        • Schumacher B.
        • Jung W.
        • Schmidt H.
        • et al.
        Transverse conduction capabilities of the crista terminalis in patients with atrial flutter and atrial fibrillation.
        J Am Coll Cardiol. 1999; 34: 363-373
        • Franz M.R.
        • Karasik P.L.
        • Li C.
        • et al.
        Electrical remodeling of the human atrium: similar effects in patients with chronic atrial fibrillation and atrial flutter.
        J Am Coll Cardiol. 1997; 30: 1785-1792
        • Philippon F.
        • Plumb V.J.
        • Epstein A.E.
        • et al.
        The risk of atrial fibrillation following radiofrequency catheter ablation of atrial flutter.
        Circulation. 1995; 92: 430-435
      2. 2020 Guidelines for Management of Atrial Fibrillation ESC Clinical Practice Guideline 20 Aug 2020) (2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society in Collaboration With the Society of Thoracic Surgeons Circulation Volume 140, Issue 2, 9 July 2019; Pages e125–e15.

        • Nabar A.
        • Rodriguez L.M.
        • Timmermans C.
        • et al.
        Effect of right atrial isthmus ablation on the occurrence of atrial fibrillation: observations in four patient groups having type I atrial flutter with or without associated atrial fibrillation.
        Circulation. 1999; 99: 1441-1445
        • Wazni O.
        • Marrouche N.F.
        • Martin D.O.
        • et al.
        Randomized study comparing combined pulmonary vein-left atrial junction disconnection and cavotricuspid isthmus ablation versus pulmonary vein-left atrial junction disconnection alone in patients presenting with typical atrial flutter and atrial fibrillat.
        Circulation. 2003;
        • Waldo A.L.
        • Cooper T.B.
        Spontaneous onset of type I atrial flutter in patients.
        J Am Coll Cardiol. 1996;
        • Glover B.M.
        • Chen J.
        • Hong K.L.
        • et al.
        Catheter ablation for atrial flutter: a survey by the European heart rhythm association and Canadian heart rhythm society.
        Europace. 2016; 18: 1880-1885
        • Turgam M.K.
        • Musikantow D.
        • Whang W.
        • et al.
        Assessment of catheter ablation or antiarrhythmic drugs for first-line therapy of atrial fibrillation. A meta-analysis of randomized clinical trials.
        JAMA Cardiol. 2021; 6: 697-705
        • Granada J.
        • Uribe W.
        • Chyou P.H.
        • et al.
        Incidence and predictors of atrial flutter in the general population.
        J Am Coll Cardiol. 2000; 36: 2242-2246
        • Halligan S.
        • Maurer M.
        • Munger T.
        • et al.
        Risk and predictors of subsequent atrial fibrillation in patients presenting with typical atrial flutter [abstract].
        Circulation. 2001; 104: II714
        • Pokushalov E.
        • Romanov A.
        • Corbucci G.
        • et al.
        Ablation of paroxysmal and persistent atrial fibrillation: 1-year follow-up through continuous subcutaneous monitoring.
        J Cardiovasc Electrophysiol. 2011; 22: 369-375
        • Morton J.B.
        • Byrne M.J.
        • Power J.M.
        • et al.
        Electrical remodeling of the atrium in an anatomic model of atrial flutter relationship between substrate and triggers for conversion to atrial fibrillation.
        Circulation. 2002; 105: 258-264
        • Maskoun W.
        • Pino M.I.
        • Ayoub K.
        • Llanos O.L.
        • et al.
        Incidence of atrial fibrillation after atrial flutter ablation.
        JACC Clin Electrophysiol. 2016; 2: 682-690
        • Da Costa A.
        • Romeyer-Bouchard C.
        • Zarqane-Sliman N.
        • et al.
        Impact of first line radiofrequency ablation in patients with lone atrial flutter on the long term risk of subsequent atrial fibrillation.
        Heart. 2005; 91: 97-98
        • Luria D.M.
        • Hodge D.O.
        • Monahan K.H.
        • et al.
        Effect of radiofrequency ablation of atrial flutter on the natural history of subsequent atrial arrhythmias.
        J Cardiovasc Electrophysiol. 2008; 19: 1145-1150
        • Gula L.J.
        • Skanes A.C.
        • Klein G.J.
        • et al.
        Atrial flutter and atrial fibrillation ablation - sequential or combined? A cost-benefit and risk analysis of primary prevention pulmonary vein ablation.
        Heart Rhythm. 2016; 13: 1441-1448
        • Chen X.
        • Bai R.
        • Deng W.
        • et al.
        HATCH score in the prediction of new-onset atrial fibrillation after catheter ablation of typical atrial flutter.
        Heart Rhythm. 2015; 12: 1483-1489
        • Tomson T.T.
        • Kapa S.
        • Bala R.
        • et al.
        Risk of stroke and atrial fibrillation after radiofrequency catheter ablation of typical atrial flutter.
        Heart Rhythm. 2012; 9: 1779-1784
        • Healey J.S.
        • Connolly S.J.
        • Gold M.R.
        • et al.
        Subclinical atrial fibrillation, and the risk of stroke.
        N Engl J Med. 2012; 366: 120-129
        • Kim A.M.
        • Olgin J.E.
        • Everett T.H.
        Role of atrial substrate and spatiotemporal organization in atrial fibrillation.
        Heart Rhythm. 2009; 6: S1-S7
      3. Falk RH. Proarrhythmic responses to atrial antiarrhythmic therapy. In: Falk RH, Podrid PJ, eds. Atrial fibrillation: mechanisms and management. New York: Raven Press.

        • Schumacher B.
        • Jung W.
        • Lewalter T.
        • et al.
        Radiofrequency ablation of atrial flutter due to administration of class IC antiarrhythmic drugs for atrial fibrillation.
        Am J Cardiol. 1999; 83: 710-713