Advertisement

Improving Outcomes in Ventricular Tachycardia Ablation Using Imaging to Identify Arrhythmic Substrates

Published:October 27, 2022DOI:https://doi.org/10.1016/j.ccep.2022.06.009

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cardiac Electrophysiology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Tung R.
        • Vaseghi M.
        • Frankel D.S.
        • et al.
        Freedom from recurrent ventricular tachycardia after catheter ablation is associated with improved survival in patients with structural heart disease: an International VT Ablation Center Collaborative Group study.
        Heart Rhythm. 2015; 12: 1997-2007
        • Dinov B.
        • Fiedler L.
        • Schönbauer R.
        • et al.
        Outcomes in catheter ablation of ventricular tachycardia in dilated nonischemic cardiomyopathy compared with ischemic cardiomyopathy.
        Circulation. 2014; 129: 728-736
        • Cronin E.M.
        • Bogun F.M.
        • Maury P.
        • et al.
        2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias: executive summary.
        J Arrhythmia. 2020; 36: 1-58
        • Beavers D.L.
        • Ghannam M.
        • Liang J.
        • et al.
        Diagnosis, significance, and management of ventricular thrombi in patients referred for VT ablation.
        J Cardiovasc Electrophysiol. 2021; 32: 2473-2483
        • Picano E.
        • Pelosi G.
        • Marzilli M.
        • et al.
        In Vivo quantitative ultrasonic evaluation of myocardial fibrosis in humans.
        Circulation. 1990; 81: 58-64
        • Bala R.
        • Ren J.-F.
        • Hutchinson M.D.
        • et al.
        Assessing epicardial substrate using intracardiac echocardiography during VT ablation.
        Circ Arrhythm Electrophysiol. 2011; 4: 667-673
        • Hussein A.
        • Jimenez A.
        • Ahmad G.
        • et al.
        Assessment of ventricular tachycardia scar substrate by intracardiac echocardiography.
        Pacing Clin Electrophysiol. 2014; 37: 412-421
        • Bunch T.J.
        • Weiss J.P.
        • Crandall B.G.
        • et al.
        Image integration using intracardiac ultrasound and 3D reconstruction for scar mapping and ablation of ventricular tachycardia.
        J Cardiovasc Electrophysiol. 2010; 21: 678-684
        • Field M.E.
        • Gold M.R.
        • Reynolds M.R.
        • et al.
        Real-world outcomes of ventricular tachycardia catheter ablation with versus without intracardiac echocardiography.
        J Cardiovasc Electrophysiol. 2020; 31: 417-422
        • Pichler B.J.
        • Wehrl H.F.
        • Judenhofer M.S.
        Latest advances in molecular imaging instrumentation.
        J Nucl Med. 2008; 49: 5S-23S
        • Mahida S.
        • Sacher F.
        • Dubois R.
        • et al.
        Cardiac imaging in patients with ventricular tachycardia.
        Circulation. 2017; 136: 2491-2507
        • Dickfeld T.
        • Lei P.
        • Dilsizian V.
        • et al.
        Integration of three-dimensional scar maps for ventricular tachycardia ablation with positron emission tomography-computed tomography.
        JACC Cardiovasc Imaging. 2008; 1: 73-82
        • Ghzally Y.
        • Imanli H.
        • Smith M.
        • et al.
        Metabolic scar assessment with18F-FDG PET: correlation to ischemic ventricular tachycardia substrate and successful ablation sites.
        J Nucl Med Off Publ Soc Nucl Med. 2021; 62: 1591-1598
        • Klein T.
        • Abdulghani M.
        • Smith M.
        • et al.
        Three-dimensional 123I-meta-iodobenzylguanidine cardiac innervation maps to assess substrate and successful ablation sites for ventricular tachycardia: feasibility study for a novel paradigm of innervation imaging.
        Circ Arrhythm Electrophysiol. 2015; 8: 583-591
        • Komatsu Y.
        • Cochet H.
        • Jadidi A.
        • et al.
        Regional myocardial wall thinning at multidetector computed tomography correlates to arrhythmogenic substrate in postinfarction ventricular tachycardia: assessment of structural and electrical substrate.
        Circ Arrhythm Electrophysiol. 2013; 6: 342-350
        • Ghannam M.
        • Cochet H.
        • Jais P.
        • et al.
        Correlation between computer tomography-derived scar topography and critical ablation sites in postinfarction ventricular tachycardia.
        J Cardiovasc Electrophysiol. 2018; 29: 438-445
        • Takigawa M.
        • Duchateau J.
        • Sacher F.
        • et al.
        Are wall thickness channels defined by computed tomography predictive of isthmuses of postinfarction ventricular tachycardia?.
        Heart Rhythm. 2019; 16: 1661-1668
        • Alyesh D.M.
        • Siontis K.C.
        • Sharaf Dabbagh G.
        • et al.
        Postinfarction myocardial calcifications on cardiac computed tomography: implications for mapping and ablation in patients with nontolerated ventricular tachycardias.
        Circ Arrhythm Electrophysiol. 2019; 12: e007023
        • Rodriguez-Granillo G.A.
        Delayed enhancement cardiac computed tomography for the assessment of myocardial infarction: from bench to bedside.
        Cardiovasc Diagn Ther. 2017; 7: 159-170
        • Shiozaki A.A.
        • Senra T.
        • Arteaga E.
        • et al.
        Myocardial fibrosis detected by cardiac CT predicts ventricular fibrillation/ventricular tachycardia events in patients with hypertrophic cardiomyopathy.
        J Cardiovasc Comput Tomogr. 2013; 7: 173-181
        • Zhao L.
        • Ma X.
        • Feuchtner G.M.
        • et al.
        Quantification of myocardial delayed enhancement and wall thickness in hypertrophic cardiomyopathy: multidetector computed tomography versus magnetic resonance imaging.
        Eur J Radiol. 2014; 83: 1778-1785
        • Esposito A.
        • Palmisano A.
        • Antunes S.
        • et al.
        Cardiac CT with delayed enhancement in the characterization of ventricular tachycardia structural substrate: relationship between CT-segmented scar and electro-anatomic mapping.
        JACC Cardiovasc Imaging. 2016; 9: 822-832
        • Ustunkaya T.
        • Desjardins B.
        • Wedan R.
        • et al.
        Epicardial conduction speed, electrogram abnormality, and computed tomography attenuation associations in arrhythmogenic right ventricular cardiomyopathy.
        JACC Clin Electrophysiol. 2019; 5: 1158-1167
        • Aikawa T.
        • Oyama-Manabe N.
        • Naya M.
        • et al.
        Delayed contrast-enhanced computed tomography in patients with known or suspected cardiac sarcoidosis: a feasibility study.
        Eur Radiol. 2017; 27: 4054-4063
        • Yamashita S.
        • Sacher F.
        • Mahida S.
        • et al.
        Role of high-resolution image integration to visualize left phrenic nerve and coronary arteries during epicardial ventricular tachycardia ablation.
        Circ Arrhythm Electrophysiol. 2015; 8: 371-380
        • van Huls van Taxis C.F.
        • Wijnmaalen A.P.
        • Piers S.R.
        • et al.
        Real-time integration of MDCT-derived coronary anatomy and epicardial fat: impact on epicardial electroanatomic mapping and ablation for ventricular arrhythmias.
        JACC Cardiovasc Imaging. 2013; 6: 42-52
        • Desjardins B.
        • Morady F.
        • Bogun F.
        Effect of epicardial fat on electroanatomical mapping and epicardial catheter ablation.
        J Am Coll Cardiol. 2010; 56: 1320-1327
        • White J.A.
        • Fine N.M.
        • Gula L.
        • et al.
        Utility of cardiovascular magnetic resonance in identifying substrate for malignant ventricular arrhythmias.
        Circ Cardiovasc Imaging. 2012; 5: 12-20
        • Faucon A.-L.
        • Bobrie G.
        • Clément O.
        Nephrotoxicity of iodinated contrast media: from pathophysiology to prevention strategies.
        Eur J Radiol. 2019; 116: 231-241
        • Woolen S.A.
        • Shankar P.R.
        • Gagnier J.J.
        • et al.
        Risk of nephrogenic systemic fibrosis in patients with stage 4 or 5 chronic kidney disease receiving a group II gadolinium-based contrast agent: a systematic review and meta-analysis.
        JAMA Intern Med. 2020; 180: 223-230
        • Weinreb J.C.
        • Rodby R.A.
        • Yee J.
        • et al.
        Use of intravenous gadolinium-based contrast media in patients with kidney disease: consensus statements from the american college of radiology and the national kidney foundation.
        Radiology. 2021; 298: 28-35
        • Hennig A.
        • Salel M.
        • Sacher F.
        • et al.
        High-resolution three-dimensional late gadolinium-enhanced cardiac magnetic resonance imaging to identify the underlying substrate of ventricular arrhythmia.
        Europace. 2018; 20: f179-f191
        • Indik J.H.
        • Gimbel J.R.
        • Abe H.
        • et al.
        2017 HRS expert consensus statement on magnetic resonance imaging and radiation exposure in patients with cardiovascular implantable electronic devices.
        Heart Rhythm. 2017; 14: e97-e153
        • Horwood L.
        • Attili A.
        • Luba F.
        • et al.
        Magnetic resonance imaging in patients with cardiac implanted electronic devices: focus on contraindications to magnetic resonance imaging protocols.
        Europace. 2017; 19: 812-817
        • Mesubi O.
        • Ahmad G.
        • Jeudy J.
        • et al.
        Impact of ICD artifact burden on late gadolinium enhancement cardiac MR imaging in patients undergoing ventricular tachycardia ablation.
        Pacing Clin Electrophysiol. 2014; 37: 1274-1283
        • Ibrahim E.-S.H.
        • Runge M.
        • Stojanovska J.
        • et al.
        Optimized cardiac magnetic resonance imaging inversion recovery sequence for metal artifact reduction and accurate myocardial scar assessment in patients with cardiac implantable electronic devices.
        World J Radiol. 2018; 10: 100-107
        • Runge M.
        • Ibrahim E.-S.H.
        • Bogun F.
        • et al.
        Metal artifact reduction in cardiovascular MRI for accurate myocardial scar assessment in patients with cardiac implantable electronic devices.
        AJR Am J Roentgenol. 2019; 213: 555-561
        • Kim R.J.
        • Fieno D.S.
        • Parrish T.B.
        • et al.
        Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function.
        Circulation. 1999; 100: 1992-2002
        • Karamitsos T.D.
        • Francis J.M.
        • Myerson S.
        • et al.
        The role of cardiovascular magnetic resonance imaging in heart failure.
        J Am Coll Cardiol. 2009; 54: 1407-1424
        • Berruezo A.
        • Penela D.
        • Jáuregui B.
        • et al.
        The role of imaging in catheter ablation of ventricular arrhythmias.
        Pacing Clin Electrophysiol. 2021; 44: 1115-1125
        • Nelson T.
        • Garg P.
        • Clayton R.H.
        • et al.
        The role of cardiac MRI in the management of ventricular arrhythmias in ischaemic and non-ischaemic dilated cardiomyopathy.
        Arrhythmia Electrophysiol Rev. 2019; 8: 191-201
        • Bettencourt N.
        • Ferreira N.D.
        • Leite D.
        • et al.
        CAD detection in patients with intermediate-high pre-test probability.
        JACC Cardiovasc Imaging. 2013; 6: 1062-1071
        • Aquaro G.D.
        • Pingitore A.
        • Strata E.
        • et al.
        Cardiac magnetic resonance predicts outcome in patients with premature ventricular complexes of left bundle branch block morphology.
        J Am Coll Cardiol. 2010; 56: 1235-1243
        • Scott P.A.
        • Rosengarten J.A.
        • Curzen N.P.
        • et al.
        Late gadolinium enhancement cardiac magnetic resonance imaging for the prediction of ventricular tachyarrhythmic events: a meta-analysis.
        Eur J Heart Fail. 2013; 15: 1019-1027
        • Ghannam M.
        • Siontis K.C.
        • Kim H.M.
        • et al.
        Stepwise approach for ventricular tachycardia ablation in patients with predominantly intramural scar.
        JACC Clin Electrophysiol. 2020; 6: 448-460
        • Romero J.
        • Cerrud-Rodriguez R.C.
        • Di Biase L.
        • et al.
        Combined endocardial-epicardial versus endocardial catheter ablation alone for ventricular tachycardia in structural heart disease: a systematic review and meta-analysis.
        JACC Clin Electrophysiol. 2019; 5: 13-24
        • Bogun F.M.
        • Desjardins B.
        • Good E.
        • et al.
        Delayed-enhanced magnetic resonance imaging in nonischemic cardiomyopathy: utility for identifying the ventricular arrhythmia substrate.
        J Am Coll Cardiol. 2009; 53: 1138-1145
        • Ghannam M.
        • Siontis K.C.
        • Cochet H.
        • et al.
        Value of mapping and ablation of ventricular tachycardia targets within the coronary venous system in patients with nonischemic cardiomyopathy.
        Heart Rhythm. 2020; 17: 520-526
        • Chopra N.
        • Tokuda M.
        • Ng J.
        • et al.
        Relation of the unipolar low-voltage penumbra surrounding the endocardial low-voltage scar to ventricular tachycardia circuit sites and ablation outcomes in ischemic cardiomyopathy.
        J Cardiovasc Electrophysiol. 2014; 25: 602-608
        • Spears D.A.
        • Suszko A.M.
        • Dalvi R.
        • et al.
        Relationship of bipolar and unipolar electrogram voltage to scar transmurality and composition derived by magnetic resonance imaging in patients with nonischemic cardiomyopathy undergoing VT ablation.
        Heart Rhythm. 2012; 9: 1837-1846
        • Benoit D.
        • Miki Y.
        • Good E.
        • et al.
        Characteristics of intramural scar in patients with nonischemic cardiomyopathy and relation to intramural ventricular arrhythmias.
        Circ Arrhythm Electrophysiol. 2013; 6: 891-897
        • Park J.
        • Desjardins B.
        • Liang J.J.
        • et al.
        Association of scar distribution with epicardial electrograms and surface ventricular tachycardia QRS duration in nonischemic cardiomyopathy.
        J Cardiovasc Electrophysiol. 2020; 31: 2032-2040
        • Neira V.
        • Santangeli P.
        • Futyma P.
        • et al.
        Ablation strategies for intramural ventricular arrhythmias.
        Heart Rhythm. 2020; 17: 1176-1184
        • Tabib A.
        • Loire R.
        • Chalabreysse L.
        • et al.
        Circumstances of death and gross and microscopic observations in a series of 200 cases of sudden death associated with arrhythmogenic right ventricular cardiomyopathy and/or dysplasia.
        Circulation. 2003; 108: 3000-3005
        • Tandri H.
        • Saranathan M.
        • Rodriguez E.R.
        • et al.
        Noninvasive detection of myocardial fibrosis in arrhythmogenic right ventricular cardiomyopathy using delayed-enhancement magnetic resonance imaging.
        J Am Coll Cardiol. 2005; 45: 98-103
        • Kirubakaran S.
        • Bisceglia C.
        • Silberbauer J.
        • et al.
        Characterization of the arrhythmogenic substrate in patients with arrhythmogenic right ventricular cardiomyopathy undergoing ventricular tachycardia ablation.
        EP Eur. 2017; 19: 1049-1062
        • Marra M.P.
        • Leoni L.
        • Bauce B.
        • et al.
        Imaging study of ventricular scar in arrhythmogenic right ventricular cardiomyopathy: comparison of 3D standard electroanatomical voltage mapping and contrast-enhanced cardiac magnetic resonance.
        Circ Arrhythm Electrophysiol. 2012; 5: 91-100
        • Zghaib T.
        • Ipek E.G.
        • Hansford R.
        • et al.
        Standard ablation versus magnetic resonance imaging-guided ablation in the treatment of ventricular tachycardia.
        Circ Arrhythm Electrophysiol. 2018; 11: e005973
        • Siontis K.C.
        • Santangeli P.
        • Muser D.
        • et al.
        Outcomes associated with catheter ablation of ventricular tachycardia in patients with cardiac sarcoidosis.
        JAMA Cardiol. 2022; 7: 175-183
        • Yokokawa M.
        • Desjardins B.
        • Crawford T.
        • et al.
        Reasons for recurrent ventricular tachycardia after catheter ablation of post-infarction ventricular tachycardia.
        J Am Coll Cardiol. 2013; 61: 66-73
        • Tao S.
        • Guttman M.A.
        • Fink S.
        • et al.
        Ablation lesion characterization in scarred substrate assessed using cardiac magnetic resonance.
        JACC Clin Electrophysiol. 2019; 5: 91-100
        • Dabbagh G.S.
        • Ghannam M.
        • Siontis K.C.
        • et al.
        Magnetic resonance mapping of catheter ablation lesions after post-infarction ventricular tachycardia ablation.
        JACC Cardiovasc Imaging. 2021; 14: 588-598
        • Vunnam R.
        • Maheshwari V.
        • Jeudy J.
        • et al.
        Ventricular arrhythmia ablation lesions detectability and temporal changes on cardiac magnetic resonance.
        Pacing Clin Electrophysiol. 2020; 43: 314-321
      1. Ghannam M, Liang J, Attili A, et al. Late gadolinium enhancement cardiac magnetic resonance imaging of ablation lesions after postinfarction ventricular tachycardia ablation: implications for ventricular tachycardia recurrence. J Cardiovasc Electrophysiol;n/a. doi:10.1111/jce.15386.

        • Soejima K.
        • Stevenson W.G.
        • Maisel W.H.
        • et al.
        Electrically unexcitable scar mapping based on pacing threshold for identification of the reentry circuit isthmus: feasibility for guiding ventricular tachycardia ablation.
        Circulation. 2002; 106: 1678-1683
        • Ilg K.
        • Baman T.S.
        • Gupta S.K.
        • et al.
        Assessment of radiofrequency ablation lesions by CMR imaging after ablation of idiopathic ventricular arrhythmias.
        JACC Cardiovasc Imaging. 2010; 3: 278-285
        • Dickfeld T.
        • Vunnam R.
        Chronic ablation lesions on CMR: is black a red herring?.
        JACC Cardiovasc Imaging. 2021; 14: 599-601
        • Iles L.
        • Pfluger H.
        • Lefkovits L.
        • et al.
        Myocardial fibrosis predicts appropriate device therapy in patients with implantable cardioverter-defibrillators for primary prevention of sudden cardiac death.
        J Am Coll Cardiol. 2011; 57: 821-828
        • Puntmann V.O.
        • Carr -White G.
        • Jabbour A.
        • et al.
        T1-mapping and outcome in nonischemic cardiomyopathy.
        JACC Cardiovasc Imaging. 2016; 9: 40-50
        • Gulati A.
        • Jabbour A.
        • Ismail T.F.
        • et al.
        Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy.
        JAMA. 2013; 309: 896-908
        • Iles L.
        • Pfluger H.
        • Phrommintikul A.
        • et al.
        Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping.
        J Am Coll Cardiol. 2008; 52: 1574-1580
        • Muser D.
        • Nucifora G.
        • Castro S.A.
        • et al.
        Myocardial substrate characterization by CMR T1 mapping in patients with NICM and No LGE undergoing catheter ablation of VT.
        JACC Clin Electrophysiol. 2021; 7: 831-840
        • Messroghli D.R.
        • Moon J.C.
        • Ferreira V.M.
        • et al.
        Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2∗ and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI).
        J Cardiovasc Magn Reson. 2017; 19: 1-24
        • Maccabelli G.
        • Tsiachris D.
        • Silberbauer J.
        • et al.
        Imaging and epicardial substrate ablation of ventricular tachycardia in patients late after myocarditis.
        EP Eur. 2014; 16: 1363-1372
        • Peretto G.
        • Sala S.
        • Basso C.
        • et al.
        Inflammation as a predictor of recurrent ventricular tachycardia after ablation in patients with myocarditis.
        J Am Coll Cardiol. 2020; 76: 1644-1656
        • Kaur D.
        • Roukoz H.
        • Shah M.
        • et al.
        Impact of the inflammation on the outcomes of catheter ablation of drug-refractory ventricular tachycardia in cardiac sarcoidosis.
        J Cardiovasc Electrophysiol. 2020; 31: 612-620
        • de Bakker J.M.
        • van Capelle F.J.
        • Janse M.J.
        • et al.
        Slow conduction in the infarcted human heart. “Zigzag” course of activation.
        Circulation. 1993; 88: 915-926
        • Ashikaga H.
        • Sasano T.
        • Dong J.
        • et al.
        Magnetic resonance-based anatomical analysis of scar-related ventricular tachycardia: implications for catheter ablation.
        Circ Res. 2007; 101: 939-947
        • Desjardins B.
        • Crawford T.
        • Good E.
        • et al.
        Infarct architecture and characteristics on delayed enhanced magnetic resonance imaging and electroanatomic mapping in patients with postinfarction ventricular arrhythmia.
        Heart Rhythm. 2009; 6: 644-651
        • Piers S.R.D.
        • Tao Q.
        • de Riva Silva M.
        • et al.
        CMR-based identification of critical isthmus sites of ischemic and nonischemic ventricular tachycardia.
        JACC Cardiovasc Imaging. 2014; 7: 774-784
        • Fernández-Armenta J.
        • Berruezo A.
        • Andreu D.
        • et al.
        Three-dimensional architecture of scar and conducting channels based on high resolution ce-CMR.
        Circ Arrhythm Electrophysiol. 2013; 6: 528-537
        • Perez-David E.
        • Arenal A.
        • Rubio-Guivernau J.L.
        • et al.
        Noninvasive identification of ventricular tachycardia-related conducting channels using contrast-enhanced magnetic resonance imaging in patients with chronic myocardial infarction: comparison of signal intensity scar mapping and endocardial voltage mapping.
        J Am Coll Cardiol. 2011; 57: 184-194
        • Quinto L.
        • Sanchez P.
        • Alarcón F.
        • et al.
        Cardiac magnetic resonance to predict recurrences after ventricular tachycardia ablation: septal involvement, transmural channels, and left ventricular mass.
        Europacer. 2021; 23: 1437-1445
        • Roca-Luque I.
        • Van Breukelen A.
        • Alarcon F.
        • et al.
        Ventricular scar channel entrances identified by new wideband cardiac magnetic resonance sequence to guide ventricular tachycardia ablation in patients with cardiac defibrillators.
        Europace. 2020; 22: 598-606
        • Andreu D.
        • Penela D.
        • Acosta J.
        • et al.
        Cardiac magnetic resonance–aided scar dechanneling: influence on acute and long-term outcomes.
        Heart Rhythm. 2017; 14: 1121-1128
        • Soto-Iglesias D.
        • Penela D.
        • Jáuregui B.
        • et al.
        Cardiac magnetic resonance-guided ventricular tachycardia substrate ablation.
        JACC Clin Electrophysiol. 2020; 6: 436-447
        • Berte B.
        • Cochet H.
        • Dang L.
        • et al.
        Image-guided ablation of scar-related ventricular tachycardia: towards a shorter and more predictable procedure.
        J Interv Card Electrophysiol Int J Arrhythm Pacing. 2020; 59: 535-544
        • Siontis K.C.
        • Kim H.M.
        • Sharaf Dabbagh G.
        • et al.
        Association of preprocedural cardiac magnetic resonance imaging with outcomes of ventricular tachycardia ablation in patients with idiopathic dilated cardiomyopathy.
        Heart Rhythm. 2017; 14: 1487-1493
        • Hendriks A.A.
        • Kis Z.
        • Glisic M.
        • et al.
        Pre-procedural image-guided versus non-image-guided ventricular tachycardia ablation-a review.
        Neth Heart J. 2020; 28: 573-583
        • Merino-Caviedes S.
        • Gutierrez L.K.
        • Alfonso-Almazán J.M.
        • et al.
        Time-efficient three-dimensional transmural scar assessment provides relevant substrate characterization for ventricular tachycardia features and long-term recurrences in ischemic cardiomyopathy.
        Sci Rep. 2021; 11: 18722