Advertisement

Patient Selection, Techniques, and Complication Mitigation for Epicardial Ventricular Tachycardia Ablation

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cardiac Electrophysiology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sosa E.
        • Scanavacca M.
        • D’avila A.
        • et al.
        A new technique to perform epicardial mapping in the electrophysiology laboratory.
        J Cardiovasc Electrophysiol. 1996; 7: 531-536https://doi.org/10.1111/j.1540-8167.1996.tb00559.x
        • Sosa E.
        • Scanavacca M.
        • D’avila A.
        • et al.
        Endocardial and epicardial ablation guided by nonsurgical transthoracic epicardial mapping to treat recurrent ventricular tachycardia.
        J Cardiovasc Electrophysiol. 1998; 9: 229-239https://doi.org/10.1111/j.1540-8167.1998.tb00907.x
        • Cronin E.M.
        • Bogun F.M.
        • Maury P.
        • et al.
        2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias.
        Heart Rhythm. 2020; 17: e2-e154
        • Tung R.
        • Vaseghi M.
        • Frankel D.
        Freedom from recurrent ventricular tachycardia after catheter ablation is associated with improved survival in patients with structural heart disease: an International VT Ablation Center Collaborative Group study.
        Heart Rhythm. 2015; 12: 1997-2007
        • Tilz R.R.
        • Lenarczyk R.
        • Scherr D.
        • et al.
        Management of ventricular tachycardia in the ablation era: results of the European Heart Rhythm Association Survey.
        Europace. 2018; 20: 209-213https://doi.org/10.1093/europace/eux332
        • Schweikert R.A.
        • Saliba W.I.
        • Tomassoni G.
        • et al.
        Percutaneous pericardial instrumentation for endo-epicardial mapping of previously failed ablations.
        Circulation. 2003; 108: 1329-1335https://doi.org/10.1161/01.CIR.0000087407.53326.31
        • Cardoso R.
        • Assis F.R.
        • D’Avila A.
        Endo-epicardial vs endocardial-only catheter ablation of ventricular tachycardia: a meta-analysis.
        J Cardiovasc Electrophysiol. 2019; 30: 1537-1548https://doi.org/10.1111/jce.14013
        • Romero J.
        • Cerrud-Rodriguez R.C.
        • Di Biase L.
        • et al.
        Combined endocardial-epicardial versus endocardial catheter ablation alone for ventricular tachycardia in structural heart disease.
        JACC: Clin Electrophysiol. 2019; 5: 13-24https://doi.org/10.1016/j.jacep.2018.08.010
        • Aryana A.
        • Tung R.
        • d’Avila A.
        Percutaneous epicardial approach to catheter ablation of cardiac arrhythmias.
        JACC: Clin Electrophysiol. 2020; 6: 1-20https://doi.org/10.1016/j.jacep.2019.10.016
        • Di Biase L.
        • Santangeli P.
        • Burkhardt D.J.
        • et al.
        Endo-epicardial homogenization of the scar versus limited substrate ablation for the treatment of electrical storms in patients with ischemic cardiomyopathy.
        J Am Coll Cardiol. 2012; 60: 132-141https://doi.org/10.1016/j.jacc.2012.03.044
        • Josephson M.E.
        • Simson M.B.
        • Harken A.H.
        • et al.
        The incidence and clinical significance of epicardial late potentials in patients with recurrent sustained ventricular tachycardia and coronary artery disease.
        Circulation. 1982; 66: 1199-1204https://doi.org/10.1161/01.CIR.66.6.1199
        • Horowitz L.N.
        • Harken A.H.
        • Kastor J.A.
        • et al.
        Ventricular resection guided by epicardial and endocardial mapping for treatment of recurrent ventricular tachycardia.
        N Engl J Med. 1980; 302: 589-593https://doi.org/10.1056/NEJM198003133021101
        • Svenson R.H.
        • Littmann L.
        • Gallagher J.J.
        • et al.
        Termination of ventricular tachycardia with epicardial laser photocoagulation: a clinical comparison with patients undergoing successful endocardial photocoagulation alone.
        J Am Coll Cardiol. 1990; 15: 163-170https://doi.org/10.1016/0735-1097(90)90194-T
        • Kaltenbrunner W.
        • Cardinal R.
        • Dubuc M.
        • et al.
        Epicardial and endocardial mapping of ventricular tachycardia in patients with myocardial infarction. Is the origin of the tachycardia always subendocardially localized?.
        Circulation. 1991; 84: 1058-1071https://doi.org/10.1161/01.CIR.84.3.1058
        • Hayashi T.
        • Liang J.J.
        • Muser D.
        • et al.
        Epicardial ventricular tachycardia in ischemic cardiomyopathy: prevalence, electrophysiological characteristics, and long-term ablation outcomes.
        J Cardiovasc Electrophysiol. 2018; 29: 1530-1539https://doi.org/10.1111/jce.13739
        • Izquierdo M.
        • Sánchez-Gómez J.M.
        • Ferrero de Loma-Osorio A.
        • et al.
        Endo-epicardial versus only-endocardial ablation as a first line strategy for the treatment of ventricular tachycardia in patients with ischemic heart disease.
        Circ Arrhythm Electrophysiol. 2015; 8: 882-889https://doi.org/10.1161/CIRCEP.115.002827
        • Tung R.
        • Michowitz Y.
        • Yu R.
        • et al.
        Epicardial ablation of ventricular tachycardia: an institutional experience of safety and efficacy.
        Heart Rhythm. 2013; 10: 490-498https://doi.org/10.1016/j.hrthm.2012.12.013
        • Tung R.
        • Raiman M.
        • Liao H.
        • et al.
        Simultaneous endocardial and epicardial delineation of 3D reentrant ventricular tachycardia.
        J Am Coll Cardiol. 2020; 75: 884-897https://doi.org/10.1016/j.jacc.2019.12.044
        • Hutchinson M.D.
        • Gerstenfeld E.P.
        • Desjardins B.
        • et al.
        Endocardial unipolar voltage mapping to detect epicardial VT substrate in patients with nonischemic left ventricular cardiomyopathy.
        Circ Arrhythm Electrophysiol. 2011; 4: 49-55https://doi.org/10.1161/CIRCEP.110.959957
        • Polin G.M.
        • Haqqani H.
        • Tzou W.
        • et al.
        Endocardial unipolar voltage mapping to identify epicardial substrate in arrhythmogenic right ventricular cardiomyopathy/dysplasia.
        Heart Rhythm. 2011; 8: 76-83https://doi.org/10.1016/j.hrthm.2010.09.088
        • Bazan V.
        • Gerstenfeld E.P.
        • Garcia F.C.
        • et al.
        Site-specific twelve-lead ECG features to identify an epicardial origin for left ventricular tachycardia in the absence of myocardial infarction.
        Heart Rhythm. 2007; 4: 1403-1410https://doi.org/10.1016/j.hrthm.2007.07.004
        • Berruezo A.
        • Mont L.
        • Nava S.
        • et al.
        Electrocardiographic Recognition of the Epicardial Origin of Ventricular Tachycardias.
        Circulation. 2004; 109: 1842-1847
        • Martinek M.
        • Stevenson W.G.
        • Inada K.
        • et al.
        QRS characteristics fail to reliably identify ventricular tachycardias that require epicardial ablation in ischemic heart disease.
        J Cardiovasc Electrophysiol. 2012; 23: 188-193https://doi.org/10.1111/j.1540-8167.2011.02179.x
        • Vallès E.
        • Bazan V.
        • Marchlinski F.E.
        ECG criteria to identify epicardial ventricular tachycardia in nonischemic cardiomyopathy.
        Circ Arrhythm Electrophysiol. 2010; 3: 63-71https://doi.org/10.1161/CIRCEP.109.859942
        • de Mello R.P.
        • Szarf G.
        • Schvartzman P.R.
        • et al.
        Delayed enhancement cardiac magnetic resonance imaging can identify the risk for ventricular tachycardia in Chagas’ cardiomyopathy.
        Arq Bras Cardiol. 2012; 98: 421-430
        • Melendez-Ramirez G.
        • Soto M.E.
        • Velasquez Alvarez L.C.
        • et al.
        Comparison of the amount and patterns of late enhancement in Chagas disease according to the presence and type of ventricular tachycardia.
        J Cardiovasc Electrophysiol. 2019; 30: 1517-1525https://doi.org/10.1111/jce.14015
        • Pisani C.F.
        • Romero J.
        • Lara S.
        • et al.
        Efficacy and safety of combined endocardial/epicardial catheter ablation for ventricular tachycardia in Chagas disease: a randomized controlled study.
        Heart Rhythm. 2020; 17: 1510-1518https://doi.org/10.1016/j.hrthm.2020.02.009
        • Garcia F.C.
        • Bazan V.
        • Zado E.S.
        • et al.
        Epicardial substrate and outcome with epicardial ablation of ventricular tachycardia in arrhythmogenic right ventricular cardiomyopathy/dysplasia.
        Circulation. 2009; 120: 366-375https://doi.org/10.1161/CIRCULATIONAHA.108.834903
        • Berruezo A.
        • Fernández-Armenta J.
        • Mont L.
        • et al.
        Combined endocardial and epicardial catheter ablation in arrhythmogenic right ventricular dysplasia incorporating scar dechanneling technique.
        Circ Arrhythm Electrophysiol. 2012; 5: 111-121https://doi.org/10.1161/CIRCEP.110.960740
        • Jiang R.
        • Nishimura T.
        • Beaser A.D.
        • et al.
        Spatial and transmural properties of the reentrant ventricular tachycardia circuit in arrhythmogenic right ventricular cardiomyopathy: simultaneous epicardial and endocardial recordings.
        Heart Rhythm. 2021; 18: 916-925https://doi.org/10.1016/j.hrthm.2021.01.028
        • Mathew S.
        • Saguner A.M.
        • Schenker N.
        • et al.
        Catheter ablation of ventricular tachycardia in patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia: a sequential approach.
        J Am Heart Assoc. 2019; 8: e010365https://doi.org/10.1161/JAHA.118.010365
        • Bai R.
        • Di Biase L.
        • Shivkumar K.
        • et al.
        Ablation of ventricular arrhythmias in arrhythmogenic right ventricular dysplasia/cardiomyopathy: arrhythmia-free survival after endo-epicardial substrate based mapping and ablation.
        Circ Arrhythmia Electrophysiol. 2011; 4: 478-485https://doi.org/10.1161/CIRCEP.111.963066
        • SHEN L.S.
        • LIU L.M.
        • ZHENG L.H.
        • et al.
        Ablation strategies for arrhythmogenic right ventricular cardiomyopathy: a systematic review and meta-analysis.
        J Geriatr Cardiol. 2020; 17: 694-703https://doi.org/10.11909/j.issn.1671-5411.2020.11.001
        • Pappone C.
        • Brugada J.
        • Vicedomini G.
        • et al.
        Electrical substrate elimination in 135 consecutive patients with brugada syndrome.
        Circ Arrhythmia Electrophysiol. 2017; 10https://doi.org/10.1161/CIRCEP.117.005053
        • Nademanee K.
        • Veerakul G.
        • Chandanamattha P.
        • et al.
        Prevention of ventricular fibrillation episodes in brugada syndrome by catheter ablation over the anterior right ventricular outflow tract epicardium.
        Circulation. 2011; 123: 1270-1279
      1. MD KN. Ablation in brugada Syndrome for Prevention of VF - a randomized, multi-center Study of epicardial Ablation in brugada syndrome Patients to prevent arrhythmia recurrence. clinicaltrials.gov.
        (Available at:) (Accessed January 12, 2022)
        • Dukkipati S.R.
        • d’Avila A.
        • Soejima K.
        • et al.
        Long-term outcomes of combined epicardial and endocardial ablation of monomorphic ventricular tachycardia related to hypertrophic cardiomyopathy.
        Circ Arrhythmia Electrophysiol. 2011; 4: 185-194https://doi.org/10.1161/CIRCEP.110.957290
        • Santangeli P.
        • Di Biase L.
        • Lakkireddy D.
        • et al.
        Radiofrequency catheter ablation of ventricular arrhythmias in patients with hypertrophic cardiomyopathy: safety and feasibility.
        Heart Rhythm. 2010; 7: 1036-1042https://doi.org/10.1016/j.hrthm.2010.05.022
        • Peretto G.
        • Sala S.
        • Rizzo S.
        • et al.
        Ventricular arrhythmias in myocarditis: characterization and relationships with myocardial inflammation.
        J Am Coll Cardiol. 2020; 75: 1046-1057https://doi.org/10.1016/j.jacc.2020.01.036
        • Peretto G.
        • Sala S.
        • Basso C.
        • et al.
        Inflammation as a predictor of recurrent ventricular tachycardia after ablation in patients with myocarditis.
        J Am Coll Cardiol. 2020; 76: 1644-1656https://doi.org/10.1016/j.jacc.2020.08.012
        • Papageorgiou N.
        • Providência R.
        • Bronis K.
        • et al.
        Catheter ablation for ventricular tachycardia in patients with cardiac sarcoidosis: a systematic review.
        EP Europace. 2018; 20: 682-691https://doi.org/10.1093/europace/eux077
        • Kaur D.
        • Roukoz H.
        • Shah M.
        • et al.
        Impact of the inflammation on the outcomes of catheter ablation of drug-refractory ventricular tachycardia in cardiac sarcoidosis.
        J Cardiovasc Electrophysiol. 2020; 31: 612-620https://doi.org/10.1111/jce.14341
        • Dinov B.
        • Fiedler L.
        • Schönbauer R.
        • et al.
        Outcomes in catheter ablation of ventricular tachycardia in dilated nonischemic cardiomyopathy compared with ischemic cardiomyopathy.
        Circulation. 2014; 129: 728-736https://doi.org/10.1161/CIRCULATIONAHA.113.003063
        • Vaseghi M.
        • Hu T.Y.
        • Tung R.
        • et al.
        Outcomes of catheter ablation of ventricular tachycardia based on etiology in nonischemic heart disease: an international ventricular tachycardia ablation center collaborative study.
        JACC: Clin Electrophysiol. 2018; 4: 1141-1150https://doi.org/10.1016/j.jacep.2018.05.007
        • Cano O.
        • Hutchinson M.
        • Lin D.
        • et al.
        Electroanatomic substrate and ablation outcome for suspected epicardial ventricular tachycardia in left ventricular nonischemic cardiomyopathy.
        J Am Coll Cardiol. 2009; 54: 799-808https://doi.org/10.1016/j.jacc.2009.05.032
        • McCrohon J.a.
        • Moon J.c. c.
        • Prasad S.k.
        • et al.
        Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance.
        Circulation. 2003; 108: 54-59https://doi.org/10.1161/01.CIR.0000078641.19365.4C
        • Santangeli P.
        • Marchlinski F.E.
        • Zado E.S.
        • et al.
        Percutaneous epicardial ablation of ventricular arrhythmias arising from the left ventricular summit.
        Circ Arrhythmia Electrophysiol. 2015; 8: 337-343https://doi.org/10.1161/CIRCEP.114.002377
        • Estner H.L.
        • Zviman M.M.
        • Herzka D.
        • et al.
        The critical isthmus sites of ischemic ventricular tachycardia are in zones of tissue heterogeneity, visualized by magnetic resonance imaging.
        Heart Rhythm. 2011; 8: 1942-1949https://doi.org/10.1016/j.hrthm.2011.07.027
        • Bogun F.M.
        • Desjardins B.
        • Good E.
        • et al.
        Delayed-enhanced magnetic resonance imaging in nonischemic cardiomyopathy.
        J Am Coll Cardiol. 2009; 53: 1138-1145https://doi.org/10.1016/j.jacc.2008.11.052
        • Acosta J.
        • Fernández-Armenta J.
        • Penela D.
        • et al.
        Infarct transmurality as a criterion for first-line endo-epicardial substrate–guided ventricular tachycardia ablation in ischemic cardiomyopathy.
        Heart Rhythm. 2016; 13: 85-95https://doi.org/10.1016/j.hrthm.2015.07.010
        • Piers S.R.D.
        • Tao Q.
        • de Riva Silva M.
        • et al.
        CMR-based identification of critical isthmus sites of ischemic and nonischemic ventricular tachycardia.
        JACC Cardiovasc Imaging. 2014; 7: 774-784https://doi.org/10.1016/j.jcmg.2014.03.013
        • Piers S.
        • Tao Q.
        • Taxis C.
        Contrast-enhanced MRI-derived scar patterns and associated ventricular tachycardias in nonischemic cardiomyopathy: implications for the ablation strategy.
        Circ Arrhythm Electrophysiol. 2013; 6: 875-883
        • Soto-Iglesias D.
        • Acosta J.
        • Penela D.
        • et al.
        Image-based criteria to identify the presence of epicardial arrhythmogenic substrate in patients with transmural myocardial infarction.
        Heart Rhythm. 2018; 15: 814-821https://doi.org/10.1016/j.hrthm.2018.02.007
        • Andreu D.
        • Penela D.
        • Acosta J.
        • et al.
        Cardiac magnetic resonance–aided scar dechanneling: influence on acute and long-term outcomes.
        Heart Rhythm. 2017; 14: 1121-1128https://doi.org/10.1016/j.hrthm.2017.05.018
        • Berruezo A.
        • Penela D.
        • Jáuregui B.
        • et al.
        The role of imaging in catheter ablation of ventricular arrhythmias.
        Pacing Clin Electrophysiol. 2021; (Published online February 1)https://doi.org/10.1111/pace.14183
        • Soto-Iglesias David
        • Penela Diego
        • Beatriz Jáuregui
        • et al.
        Cardiac magnetic resonance-guided ventricular tachycardia substrate ablation.
        JACC: Clin Electrophysiol. 2020; 6: 436-447https://doi.org/10.1016/j.jacep.2019.11.004
        • Komatsu Y.
        • Cochet H.
        • Jadidi A.
        Regional myocardial wall thinning at multi-detector computed tomography correlates to arrhythmogenic substrate in post-infarction ventricular tachycardia: assessment of structural and electrical substrate.
        Circ Arrhythm Electrophysiol. 2013; 6: 342-350
        • Yamashita S.
        • Sacher F.
        • Hooks D.A.
        • et al.
        Myocardial wall thinning predicts transmural substrate in patients with scar-related ventricular tachycardia.
        Heart Rhythm. 2017; 14: 155-163https://doi.org/10.1016/j.hrthm.2016.11.012
        • Komatsu Y.
        • Daly M.
        • Sacher F.
        • et al.
        Endocardial ablation to eliminate epicardial arrhythmia substrate in scar-related ventricular tachycardia.
        J Am Coll Cardiol. 2014; 63: 1416-1426https://doi.org/10.1016/j.jacc.2013.10.087
        • Esposito A.
        • Palmisano A.
        • Antunes S.
        • et al.
        Cardiac CT with delayed enhancement in the characterization of ventricular tachycardia structural substrate: relationship between CT-segmented scar and electro-anatomic mapping.
        JACC: Cardiovasc Imaging. 2016; 9: 822-832https://doi.org/10.1016/j.jcmg.2015.10.024
        • Bunch T.J.
        • Weiss J.P.
        • Crandall B.G.
        • et al.
        Image integration using intracardiac ultrasound and 3D reconstruction for scar mapping and ablation of ventricular tachycardia.
        J Cardiovasc Electrophysiol. 2010; 21: 678-684https://doi.org/10.1111/j.1540-8167.2009.01680.x
        • Bala R.
        • Ren J.F.
        • Hutchinson M.D.
        • et al.
        Assessing epicardial substrate using intracardiac echocardiography during VT ablation.
        Circ Arrhythmia Electrophysiol. 2011; 4: 667-673https://doi.org/10.1161/CIRCEP.111.963553
        • Aryana A.
        • d’Avila A.
        Epicardial approach for cardiac electrophysiology procedures.
        J Cardiovasc Electrophysiol. 2020; 31: 345-359https://doi.org/10.1111/jce.14282
        • Khan M.
        • Hendriks A.A.
        • Yap S.C.
        • et al.
        Damage to the left internal mammary artery during anterior epicardial access for ventricular tachycardia ablation.
        HeartRhythm Case Rep. 2018; 4: 534-537https://doi.org/10.1016/j.hrcr.2018.08.002
        • Weerasooriya R.
        • Jais P.
        • Sacher F.
        • et al.
        Utility of the lateral fluoroscopic view for subxiphoid pericardial access.
        Circ Arrhythmia Electrophysiol. 2009; 2: e15-e17https://doi.org/10.1161/CIRCEP.108.803676
        • Mathew S.
        • Feickert S.
        • Fink T.
        • et al.
        Epicardial access for VT ablation: analysis of two different puncture techniques, incidence of adhesions and complication management.
        Clin Res Cardiol. 2021; 110: 810-821https://doi.org/10.1007/s00392-020-01711-z
        • Sacher F.
        • Roberts-Thomson K.
        • Maury P.
        • et al.
        Epicardial ventricular tachycardia ablation: a multicenter safety study.
        J Am Coll Cardiol. 2010; 55: 2366-2372https://doi.org/10.1016/j.jacc.2009.10.084
        • Page S.P.
        • Duncan E.R.
        • Thomas G.
        • et al.
        Epicardial catheter ablation for ventricular tachycardia in heparinized patients.
        Europace. 2013; 15: 284-289https://doi.org/10.1093/europace/eus258
        • Miyamoto K.
        • Killu A.M.
        • Kella D.K.
        • et al.
        Feasibility and safety of percutaneous epicardial access for mapping and ablation for ventricular arrhythmias in patients on oral anticoagulants.
        J Interv Card Electrophysiol. 2019; 54: 81-89https://doi.org/10.1007/s10840-018-0441-0
        • Nakamura T.
        • Davogustto G.E.
        • Schaeffer B.
        • et al.
        Complications and anticoagulation strategies for percutaneous epicardial ablation procedures.
        Circ Arrhythmia Electrophysiol. 2018; 11https://doi.org/10.1161/CIRCEP.118.006714
        • Jurko A.
        • Minarik M.
        • Cisarikova V.
        • et al.
        Congenital complete and partial absence of the left pericardium.
        Wien Med Wochenschr. 2013; 163: 426-428https://doi.org/10.1007/s10354-013-0178-4
        • Lennon Collins K.
        • Zakharious F.
        • Mandal A.
        • et al.
        Pericardial cyst: never too late to diagnose.
        JCM. 2018; 7: 399https://doi.org/10.3390/jcm7110399
        • Patel J.
        • Park C.
        • Michaels J.
        • et al.
        Pericardial cyst: case reports and a literature review.
        Echocardiography. 2004; 21: 269-272https://doi.org/10.1111/j.0742-2822.2004.03097.x
        • Subramanian M.
        • Ravilla V.V.
        • Yalagudri S.
        • et al.
        CT-guided percutaneous epicardial access for ventricular tachycardia ablation: a proof-of-concept study.
        J Cardiovasc Electrophysiol. 2021; https://doi.org/10.1111/jce.15210
        • D’avila A.
        • Neuzil P.
        • Thiagalingam A.
        • et al.
        Experimental efficacy of pericardial instillation of anti-inflammatory agents during percutaneous epicardial catheter ablation to prevent postprocedure pericarditis.
        J Cardiovasc Electrophysiol. 2007; 18: 1178-1183https://doi.org/10.1111/j.1540-8167.2007.00945.x
        • Wan S.H.
        • Killu A.M.
        • Hodge D.O.
        • et al.
        Obesity does not increase complication rate of percutaneous epicardial access.
        J Cardiovasc Electrophysiol. 2014; 25: 1174-1179https://doi.org/10.1111/jce.12485
        • Roberts-Thomson K.C.
        • Seiler J.
        • Steven D.
        • et al.
        Percutaneous access of the epicardial space for mapping ventricular and supraventricular arrhythmias in patients with and without prior cardiac surgery.
        J Cardiovasc Electrophysiol. 2010; 21: 406-411https://doi.org/10.1111/j.1540-8167.2009.01645.x
        • Tschabrunn C.M.
        • Haqqani H.M.
        • Cooper J.M.
        • et al.
        Percutaneous epicardial ventricular tachycardia ablation after noncoronary cardiac surgery or pericarditis.
        Heart Rhythm. 2013; 10: 165-169https://doi.org/10.1016/j.hrthm.2012.10.012
        • Soejima K.
        • Couper G.
        • Cooper J.M.
        • et al.
        Subxiphoid surgical approach for epicardial catheter-based mapping and ablation in patients with prior cardiac surgery or difficult pericardial access.
        Circulation. 2004; 110: 1197-1201https://doi.org/10.1161/01.CIR.0000140725.42845.90
        • Li A.
        • Hayase J.
        • Do D.
        • et al.
        Hybrid surgical vs percutaneous access epicardial ventricular tachycardia ablation.
        Heart Rhythm. 2018; 15: 512-519https://doi.org/10.1016/j.hrthm.2017.11.009
        • Gunda S.
        • Reddy M.
        • Pillarisetti J.
        • et al.
        Differences in complication rates between large bore needle and a long micropuncture needle during epicardial access: time to change clinical practice?.
        Circ Arrhythm Electrophysiol. 2015; 8: 890-895https://doi.org/10.1161/CIRCEP.115.002921
        • Lakkireddy D.
        • Afzal M.R.
        • Lee R.J.
        • et al.
        Short and long-term outcomes of percutaneous left atrial appendage suture ligation: results from a US multicenter evaluation.
        Heart Rhythm. 2016; 13: 1030-1036https://doi.org/10.1016/j.hrthm.2016.01.022
        • Di Biase L.
        • Burkhardt J.D.
        • Reddy V.
        • et al.
        Initial international multicenter human experience with a novel epicardial access needle embedded with a real-time pressure/frequency monitoring to facilitate epicardial access: feasibility and safety.
        Heart Rhythm. 2017; 14: 981-988https://doi.org/10.1016/j.hrthm.2017.02.033
        • Burkland D.A.
        • Ganapathy A.V.
        • John M.
        • et al.
        Near-field impedance accurately distinguishes among pericardial, intracavitary, and anterior mediastinal position.
        J Cardiovasc Electrophysiol. 2017; 28: 1492-1499https://doi.org/10.1111/jce.13325
        • Nakatsuma K.
        • Yamamoto E.
        • Watanabe S.
        • et al.
        Ultrathin endoscopy-guided pericardiocentesis: a pilot study in a swine model.
        J Invasive Cardiol. 2016; 28: 78-80
        • Juliá J.
        • Bokhari F.
        • Uuetoa H.
        • et al.
        A new era in epicardial access for the ablation of ventricular arrhythmias.
        JACC: Clin Electrophysiol. 2021; 7: 85-96https://doi.org/10.1016/j.jacep.2020.07.027
        • Koruth J.S.
        • d’Avila A.
        Management of hemopericardium related to percutaneous epicardial access, mapping, and ablation.
        Heart Rhythm. 2011; 8: 1652-1657https://doi.org/10.1016/j.hrthm.2011.03.059
        • Beyls C.
        • Hermida A.
        • Duchateau J.
        • et al.
        Management of acute cardiac tamponade by direct autologous blood transfusion in interventional electrophysiology.
        J Cardiovasc Electrophysiol. 2019; 30: 1287-1293https://doi.org/10.1111/jce.14050
        • Koruth J.S.
        • Aryana A.
        • Dukkipati S.R.
        • et al.
        Unusual complications of percutaneous epicardial access and epicardial mapping and ablation of cardiac arrhythmias.
        Circ Arrhythm Electrophysiol. 2011; 4: 882-888https://doi.org/10.1161/CIRCEP.111.965731
        • D’Avila A.
        • Gutierrez P.
        • Scanavacca M.
        • et al.
        Effects of radiofrequency pulses delivered in the vicinity of the coronary arteries: implications for nonsurgical transthoracic epicardial catheter ablation to treat ventricular tachycardia.
        Pacing Clin Electrophysiol. 2002; 25: 1488-1495https://doi.org/10.1046/j.1460-9592.2002.01488.x
        • Viles-Gonzalez J.F.
        • de Castro Miranda R.
        • Scanavacca M.
        • et al.
        Acute and chronic effects of epicardial radiofrequency applications delivered on epicardial coronary arteries.
        Circ Arrhythm Electrophysiol. 2011; 4: 526-531https://doi.org/10.1161/CIRCEP.110.961508
        • Fan R.
        • Cano O.
        • Ho S.Y.
        • et al.
        Characterization of the phrenic nerve course within the epicardial substrate of patients with nonischemic cardiomyopathy and ventricular tachycardia.
        Heart Rhythm. 2009; 6: 59-64https://doi.org/10.1016/j.hrthm.2008.09.033
        • Kumar S.
        • Barbhaiya C.R.
        • Baldinger S.H.
        • et al.
        Epicardial phrenic nerve displacement during catheter ablation of atrial and ventricular arrhythmias: procedural experience and outcomes.
        Circ Arrhythmia Electrophysiol. 2015; 8: 896-904https://doi.org/10.1161/CIRCEP.115.002818
        • Di Biase L.
        • Burkhardt J.D.
        • Pelargonio G.
        • et al.
        Prevention of phrenic nerve injury during epicardial ablation: comparison of methods for separating the phrenic nerve from the epicardial surface.
        Heart Rhythm. 2009; 6: 957-961https://doi.org/10.1016/j.hrthm.2009.03.022
        • Yamada T.
        • McElderry H.T.
        • Platonov M.
        • et al.
        Aspirated air in the pericardial space during epicardial catheterization may elevate the defibrillation threshold.
        Int J Cardiol. 2009; 135: e34-e35https://doi.org/10.1016/j.ijcard.2008.03.074
        • Sroubek J.
        • Anter E.
        Multielectrode epicardial mapping.
        in: d’Avila A. Aryana A. Reddy V.Y. Percutaneous epicardial interventions: a guide for cardiac electrophysiologists. Cardiotext Publishing, Hopkins, MN2020: 185-189
        • Abbara S.
        • Desai J.C.
        • Cury R.C.
        • et al.
        Mapping epicardial fat with multi-detector computed tomography to facilitate percutaneous transepicardial arrhythmia ablation.
        Eur J Radiol. 2006; 57: 417-422https://doi.org/10.1016/j.ejrad.2005.12.030
        • Saba M.M.
        • Akella J.
        • Gammie J.
        • et al.
        The influence of fat thickness on the human epicardial bipolar electrogram characteristics: measurements on patients undergoing open-heart surgery.
        EP Europace. 2009; 11: 949-953https://doi.org/10.1093/europace/eup156
        • Tung R.
        • Nakahara S.
        • Ramirez R.
        • et al.
        Distinguishing epicardial fat from scar: analysis of electrograms using high-density electroanatomic mapping in a novel porcine infarct model.
        Heart Rhythm. 2010; 7: 389-395https://doi.org/10.1016/j.hrthm.2009.11.023
        • Sacher F.
        • Wright M.
        • Derval N.
        • et al.
        Endocardial versus epicardial ventricular radiofrequency ablation: utility of in vivo contact force assessment.
        Circ Arrhythmia Electrophysiol. 2013; 6: 144-150https://doi.org/10.1161/CIRCEP.111.974501
        • Aryana A.
        • O’Neill P.G.
        • Pujara D.K.
        • et al.
        Impact of irrigation flow rate and intrapericardial fluid on cooled-tip epicardial radiofrequency ablation.
        Heart Rhythm. 2016; 13: 1602-1611https://doi.org/10.1016/j.hrthm.2016.05.008
        • Yokokawa M.
        • Latchamsetty R.
        • Good E.
        • et al.
        Ablation of epicardial ventricular arrhythmias from nonepicardial sites.
        Heart Rhythm. 2011; 8: 1525-1529https://doi.org/10.1016/j.hrthm.2011.06.020
        • Kumar S.
        • Barbhaiya C.R.
        • Sobieszczyk P.
        • et al.
        Role of alternative interventional procedures when endo- and epicardial catheter ablation attempts for ventricular arrhythmias fail.
        Circ Arrhythm Electrophysiol. 2015; 8: 606-615https://doi.org/10.1161/CIRCEP.114.002522
        • Obel O.A.
        • d’Avila A.
        • Neuzil P.
        • et al.
        Ablation of left ventricular epicardial outflow tract tachycardia from the distal great cardiac vein.
        J Am Coll Cardiol. 2006; 48: 1813-1817https://doi.org/10.1016/j.jacc.2006.06.006
        • Baman T.S.
        • Ilg K.J.
        • Gupta S.K.
        • et al.
        Mapping and ablation of epicardial idiopathic ventricular arrhythmias from within the coronary venous system.
        Circ Arrhythmia Electrophysiol. 2010; 3: 274-279https://doi.org/10.1161/CIRCEP.109.910802
        • Kreidieh B.
        • Rodríguez-Mañero M.
        • Schurmann P.
        • et al.
        Retrograde coronary venous ethanol infusion for ablation of refractory ventricular tachycardia.
        Circ Arrhythm Electrophysiol. 2016; 9https://doi.org/10.1161/CIRCEP.116.004352 e004352
        • Aziz Z.
        • Moss J.D.
        • Jabbarzadeh M.
        • et al.
        Totally endoscopic robotic epicardial ablation of refractory left ventricular summit arrhythmia: first-in-man.
        Heart Rhythm. 2017; 14: 135-138https://doi.org/10.1016/j.hrthm.2016.09.005
        • Nguyen D.T.
        • Tzou W.S.
        • Sandhu A.
        • et al.
        Prospective multicenter experience with cooled radiofrequency ablation using high impedance irrigant to target deep myocardial substrate refractory to standard ablation.
        JACC: Clin Electrophysiol. 2018; 4: 1176-1185https://doi.org/10.1016/j.jacep.2018.06.021
        • Robinson C.G.
        • Samson P.P.
        • Moore K.M.S.
        • et al.
        Phase I/II trial of electrophysiology-guided noninvasive cardiac radioablation for ventricular tachycardia.
        Circulation. 2019; 139: 313-321https://doi.org/10.1161/CIRCULATIONAHA.118.038261