Advertisement

Improvement in Lesion Formation with Radiofrequency Energy and Utilization of Alternate Energy Sources (Cryoablation and Pulsed Field Ablation) for Ventricular Arrhythmia Ablation

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cardiac Electrophysiology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Cronin E.M.
        • Bogun F.M.
        • Maury P.
        • et al.
        2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias.
        Europace. 2019; 21: 1143-1144
        • Al-Khatib S.M.
        • Stevenson W.G.
        • Ackerman M.J.
        • et al.
        2017 AHA/ACC/HR guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association Task force on clinical Practice Guidelines and the Heart Rhythm Society.
        Heart Rhythm. 2018; 15: e73-e189
        • Stevenson W.G.
        • Wilber D.J.
        • Natale A.
        • et al.
        Multicenter Thermocool VT Ablation Trial Investigators. Irrigated radiofrequency catheter ablation guided by electroanatomic mapping for recurrent ventricular tachycardia after myocardial infarction: the multicenter thermocool ventricular tachycardia ablation trial.
        Circulation. 2008; 118: 2773-2782
        • Roberts-Thomson K.C.
        • Steven D.
        • Seiler J.
        • et al.
        Coronary artery injury due to catheter ablation in adults: presentations and outcomes.
        Circulation. 2009; 120: 1465-1473
        • Aoyama H.
        • Nakagawa H.
        • Pitha J.V.
        • et al.
        Comparison of cryothermia and radiofrequency current in safety and efficacy of catheter ablation within the canine coronary sinus close to the left circumflex coronary artery.
        J Cardiovasc Electrophysiol. 2005; 16: 1218-1226
        • Stavrakis S.
        • Jackman W.M.
        • Nakagawa H.
        • et al.
        Risk of coronary artery injury with radiofrequency ablation and cryoablation of epicardial posteroseptal accessory pathways within the coronary venous system.
        Circ Arrhythm Electrophysiol. 2014; 7: 113-119
        • Avitall B.
        • Mughal K.
        • Hare J.
        • et al.
        The effects of electrode-tissue contact on radiofrequency lesion generation.
        PACE. 1997; 20: 2899-2910
        • Haines D.E.
        Determinants of lesion size during radiofrequency catheter ablation: the role of electrode-tissue contact force and duration of energy delivery.
        J Cardiovasc Electrophysiol. 1991; 2: 509-515
        • Strickberger S.A.
        • Vorperian V.R.
        • Man K.C.
        • et al.
        Relation between impedance and endocardial contact during radiofrequency catheter ablation.
        Am Heart J. 1994; 128: 226-229
        • Zheng X.
        • Walcott G.P.
        • Hall J.A.
        • et al.
        Electrode impedance: an indicator of electrode-tissue contact and lesion dimensions during linear ablation.
        J Interv Card Electrophysiol. 2000; 4: 645-654
        • Biase L.D.
        • Natale A.
        • Barrerr C.
        • et al.
        Relationship between contact forces, lesion characteristics, “popping,” and char formation: Experience with robotic navigation system.
        J Cardiovasc Electrophysiol. 2009; 20: 436-440
        • Yokoyama K.
        • Nakagawa H.
        • Shah D.C.
        • et al.
        Novel contact force sensor incorporated in irrigated radiofrequency ablation catheter predicts lesion size and incidence of steam pop and thrombus.
        Circ Arrhythmia Electrophysiol. 2008; 1: 354-362
        • Shah D.C.
        • Lambert H.
        • Nakagawa H.
        • et al.
        Area under the real-time contact force curve (force-time integral) predicts radiofrequency lesion size in an in vitro contractile model.
        J Cardiovasc Electrophysiol. 2010; 21: 1038-1043
        • Thiagalingam A.
        • d’Avila A.
        • Foley L.
        • et al.
        Importance of catheter contact force during irrigated radiofrequency ablation: evaluation in a porcine ex vivo model using a force-sensing catheter.
        J Cardiovasc Electrophysiol. 2010; 21: 806-811
        • Shah D.S.
        • Lambert H.
        • Langenkamp A.
        • et al.
        Catheter tip force required for mechanical perforation of porcine cardiac chambers.
        Europcae. 2010; 13: 277-283
        • Ikeda A.
        • Nakagawa H.
        • Lambert H.
        • et al.
        Relationship between catheter contact force and radiofrequency lesion size and incidence of steam pop in the beating canine heart: electrogram amplitude, impedance, and electrode temperature are poor predictors of electrode-tissue contact force and lesion size.
        Circ Arrhythm Electrophysiol. 2014; 7: 1174-1180
        • Kuck K.H.
        • Reddy V.Y.
        • Schmidt B.
        • et al.
        A novel radiofrequency ablation catheter using contact force sensing: Toccata study.
        Heart Rhythm. 2012; 9: 18-23
        • Reddy V.Y.
        • Shah D.
        • Kautzner J.
        • et al.
        The relationsip between contact force and clinical outcome during radiofrequency catheter ablation of atrial fibrillation in the TOCCATA study.
        Heart Rhythm. 2012; 9: 1789-1795
        • Neuzil P.
        • Reddy V.Y.
        • Kautzner J.
        • et al.
        Electrical reconnection after pulmonary vein isolation is contingent on contact force during initial treatment: results from the EFFICAS I study.
        Circ Arrhytm Electrophysiol. 2013; 6: 327-333
        • Nakagawa H.
        • Kautzner J.
        • Natale A.
        • et al.
        Locations of high contact force during left atrial mapping in atrial fibrillation patients: electrogram amplitude and impedance are poor predictors of electrode-tissue contact force for ablation of atrial fibrillation.
        Circ Arrhythm Electrophysiol. 2013; 6: 746-753
        • Nakagawa H.
        • Jackman W.M.
        The role of contact force in atrial fibrillation ablation.
        J Atr Fibrillation. 2014; 7: 1027
        • Perna F.
        • Heist E.K.
        • Danik S.B.
        • et al.
        Assessment of catheter tip contact force resulting in cardiac perforation in swine atria using force sensing technology.
        Circ Arrhythm Electrophysiol. 2011; 4: 218-224
        • Martinek M.
        • Lemes C.
        • Sigmund E.
        • et al.
        Clinical impact of an open-irrigated radiofrequency catheter with direct force measurement on atrial fibrillation ablation. 2012.
        Pacing Clin Electrophysiol. 2012; 35: 1312-1318
        • Kumar S.
        • Haqqani H.M.
        • Chan M.
        • et al.
        Predictive value of impedance changes for real-time contact force measurements during catheter ablation of atrial arrhythmias in human.
        Heart Rhythm. 2013; 10: 962-969
        • Natale A.
        • Reddy V.Y.
        • Monir G.
        • et al.
        Paroxysmal AF catheter ablation with a contact force sensing catheter.
        J Am Coll Cardiol. 2014; 64: 647-656
        • Jarman J.W.E.
        • Panikker S.
        • Das M.
        • et al.
        Relationship between contact force sensing technology and Medium-term outcome of atrial fibrillation ablation : a multicenter study of 600 patients.
        J Cardiovasc Electrophysiol. 2015; 26: 378-384
        • El Haddad M.
        • Taghji P.
        • Phlips T.
        • et al.
        Determinants of acute and late pulmonary vein reconnection in contact force - guided pulmonary vein isolation. Identifying the weakest link in the ablation chain.
        Circ Arrhythmia Electrophysiol. 2017; 10: e004867
        • Taghji P.
        • El Haddad M.
        • Phlips T.
        • et al.
        Evaluation of a strategy Aiming to Enclose the pulmonary veins with Contiguous and optimized radiofrequency lesions in Paroxysmal atrial fibrillation: a Pilot study.
        JACC Clin Electrophysiol. 2018; 4: 99-108
        • Nakagawa H.
        • Yamanashi W.S.
        • Pitha J.V.
        • et al.
        Comparison of in vivo tissue temperature profile and lesion geometry for radiofrequency ablation with a saline-irrigated electrode versus temperature control in a canine thigh muscle preparation.
        Circulation. 1995; 91: 2264-2273
        • Wittkampf F.H.
        • Nakagawa H.
        RF catheter ablation: lessons on lesions.
        Pacing Clin Electrophysiol. 2006; 29: 1285-1297
        • Sapp J.L.
        • Cooper J.M.
        • Zei P.
        • et al.
        Large radiofrequency ablation lesions can be created with a retractable infusion-needle catheter.
        J Cardiovasc Electrophysiol. 2006; 17: 657-661
        • Berte B.
        • Cochet H.
        • Magat J.
        • et al.
        Irrigated needle ablation creates larger and more transmural ventricular lesions compared with standard unipolar ablation in an ovine model.
        Circ Arrhythm Electrophysiol. 2015; 8: 1498-1506
        • Sapp J.L.
        • Beeckler C.
        • Pike R.
        • et al.
        Initial human feasibility of infusion needle catheter ablation for refractory ventricular tachycardia.
        Circulation. 2013; 128: 2289-2295
        • Suzuki A.
        • Lehmann H.I.
        • Wang S.
        • et al.
        Impact of myocardial fiber orientation on lesions created by a novel heated saline enhanced radiofrequency needle-tip catheter: an MRI lesion validation study.
        Heart Rhythm. 2021; 18: 443-452
        • Gill W.
        • Fraser J.
        • Carter D.C.
        Repeated freeze-thaw cycles in cryosurgery.
        Nature. 1968; 219: 410-413
        • Mazur M.
        Causes of injury in frozen and thawed cells.
        Fed Proc. 1965; 24: 5175-5182
        • Mazur P.
        Cryobiology: The freezing of biological systems.
        Science. 1970; 168: 939-949
        • McGrath J.J.
        Low temperature injury processes, in Advances in Bioheat and Mass Transfer: Microscale Analysis of thermal injury Processes, Instrumentation, modeling, and clinical applications.
        Am Socmech Engin. 1993; 268: 125-132
        • Stewart G.J.
        • Preketes A.
        • Horton M.
        • et al.
        Hepatic cryotherapy: Double-freeze cycles achieve greater hepatocellular injury in man.
        Cryobiology. 1995; 32: 215-219
        • Gage A.A.
        • Guest K.
        • Montes M.
        • et al.
        Effect of varying freezing and thawing rates in experimental cryosurgery.
        Cryobiology. 1985; 22: 175-182
        • Kuck K.H.
        • Brugada J.
        • Alexander A.
        • et al.
        Radiofrequency ablation for Paroxysmal atrial fibrillation.
        N Engl J Med. 2016; 374: 2235-2245
        • Pojar M.
        • Harrer J.
        • Omran N.
        • et al.
        Surgical cryoablation of drug resistant ventricular tachycardia and aneurysmectomy of postinfarction left ventricular aneurysm.
        Case Rep Med. 2014; 2014: 207851
        • Spina R.
        • Granger E.
        • Walker B.
        • et al.
        Ventricular tachycardia in hypertrophic cardiomyopathy with apical aneurysm successfully treated with left ventricular aneurysmectomy and cryoablation.
        Eur Heart J. 2013; 34: 3631.7-363111
        • Berte B.
        • Sacher F.
        • Wielandts J.Y.
        • et al.
        A new cryoenergy for ventricular tachycardia ablation: a proof-of-concept study.
        Europace. 2017; 19: 1401-1407
        • Collins N.J.
        • Barlow M.
        • Paul Varghese P.
        • et al.
        Cryoablation versus radiofrequency ablation in the treatment of atrial Flutter trial (CRAAFT).
        J Interv Card Electrophysiol. 2006; 16: 1-5
        • Vedel J.
        • Frank R.
        • Fontaine G.
        • et al.
        [permanent intra-hisian atrioventricular block induced during right intraventricular exploration].
        Arch des maladies du coeur des vaisseaux. 1979; 72: 107-112
        • Gonzalez R.
        • Scheinman M.
        • Margaretten W.
        • et al.
        Closed-chest electrode-catheter technique for his bundle ablation in dogs.
        Am J Physiol. 1981; 241: H283-H287
        • Bardy G.H.
        • Ideker R.E.
        • Kasell J.
        • et al.
        Transvenous ablation of the atrioventricular conduction system in dogs: Electrophysiologic and histologic observations.
        Am J Cardiol. 1983; 51: 1775-1782
        • Gallagher J.J.
        • Svenson R.H.
        • Kasell J.H.
        • et al.
        Catheter technique for closed-chest ablation of the atrioventricular conduction system.
        N Engl J Med. 1982; 306: 194-200
        • Scheinman M.M.
        • Evans-Bell T.
        Catheter ablation of the atrioventricular junction: a report of the percutaneous mapping and ablation registry.
        Circulation. 1984; 70: 1024-1029
        • Morady F.
        • Scheinman M.M.
        • Winston S.A.
        • et al.
        Efficacy and safety of transcatheter ablation of posteroseptal accessory pathways.
        Circulation. 1985; 72: 170-177
        • Fontaine G.
        • Tonet J.L.
        • Frank R.
        • et al.
        [emergency treatment of chronic ventricular tachycardia after myocardial infarction by endocavitary fulguration].
        Arch des maladies du coeur des vaisseaux. 1985; 78: 1037-1043
        • Evans Jr., G.T.
        • Scheinman M.M.
        • Zipes D.P.
        • et al.
        Catheter ablation for control of ventricular tachycardia: a report of the percutaneous cardiac mapping and ablation registry.
        PACE. 1986; 9 (53): 1391-1395
        • Bardy G.H.
        • Coltorti F.
        • Stewart R.B.
        • et al.
        Catheter-mediated electrical ablation: the relation between current and pulse width on voltage breakdown and shock-wave generation.
        Circ Res. 1988; 63: 409-414
        • Hauer R.N.
        • Robles de Medina E.O.
        • Borst C.
        Proarrhythmic effects of ventricular electrical catheter ablation in dogs.
        J Am Coll Cardiol. 1987; 10: 1350-1356
        • Ahsan A.J.
        • Cunningham D.
        • Rowland E.
        • et al.
        Catheter ablation without fulguration: design and performance of a new system.
        Pacing Clin Electrophysiol. 1989; 12: 1557-1561
        • Lemery R.
        • Lavallee E.
        • Girard A.
        • et al.
        Physical and dynamic characteristics of dc ablation in relation to the type of energy delivery and catheter design.
        Pacing Clin Electrophysiol. 1991; 14: 1158-1168 34
        • Lemery R.
        • Leung T.K.
        • Lavallee E.
        • et al.
        In vitro and in vivo effects within the coronary sinus of nonarcing and arcing shocks using a new system of low-energy dc ablation.
        Circulation. 1991; 83: 279-293
        • Lemery R.
        • Talajic M.
        • Roy D.
        • et al.
        Success, safety, and late electrophysiological outcome of low-energy direct-current ablation in patients with the Wolff-Parkinson-White syndrome.
        Circulation. 1992; 85: 957-962
        • Weaver J.C.
        • Chizmadzhev Y.A.
        Theory of electroporation: a review.
        Bioelectrochem Bioenergetics. 1996; 41: 135-160
        • Tovar O.
        • Tung L.
        Electroporation of cardiac cell membranes wit monophasic or biphasic rectangular pulses.
        Pacing Clin Electrophysiol. 1991; 14: 1887-1892
        • Lee R.C.
        • Zhang D.
        • Hannig J.
        Biophysical injury mechanisms in electrical shock trauma.
        Annu Rev Biomed Eng. 2000; 2: 47-509
        • Wittkampf F.H.
        • van Driel V.J.
        • van Wessel H.
        • et al.
        Feasibility of electroporation for the creation of pulmonary vein ostial lesions.
        J Cardiovasc Electrophysiol. 2011; 22: 302-309
        • Wittkampf F.H.M.
        • Van Driel V.
        • Van Wessel H.
        • et al.
        Myocardial lesion depth with circular electroporation ablation.
        Circ Arrhythm Electrophysiol. 2012; 5: 581-586
        • Van Driel V.J.H.M.
        • Neven K.G.E.J.
        • Van Wessel H.
        • et al.
        Pulmonary vein stenosis after catheter ablation electroporation versus radiofrequency.
        Circ Arrhythmia Electrophysiol. 2014; 7: 734-738
        • Neven K.
        • van Driel V.
        • van Wessel H.
        • et al.
        Safety and feasibility of closed chest epicardial catheter ablation using Electroporation.
        Circ Arrhythm Electrophysiol. 2014; 7: 913-919
        • van Driel V.J.
        • Neven K.
        • van Wessel H.
        • et al.
        Low vulnerability of the right phrenic nerve to electroporation ablation.
        Heart Rhythm. 2015; 12: 1838-1844
        • Neven K.
        • Van Es R.
        • Van Driel V.
        • et al.
        Acute and long-term effects of full-power electroporation ablation directly on the porcine esophagus.
        Circ Arrhythmia Electrophysiol. 2017; 10: e004672
        • Koruth J.
        • Kuroki K.
        • Iwasawa J.
        • et al.
        Preclinical evaluation of pulsed field ablation: electrophysiological and histological assessment of thoracic vein isolation.
        Circ Arrhythm Electrophysiol. 2019; 12: e007781
        • Loh P.
        • Van Es R.
        • Groen M.H.A.
        • et al.
        Pulmonary vein isolation with single pulse irreversible electroporation.
        Circ Arrhythm Electrophysiol. 2020; 13: e008192
        • Reddy V.Y.
        • Anic A.
        • Koruth J.
        • et al.
        Pulsed field ablation in Patients with persistent atrial fibrillation.
        J Am Coll Cardiol. 2020; 76: 1068-1080
        • Wittkampf F.H.M.
        • Van Es R.
        • Neven K.
        Electroporation and its Relevance for cardiac catheter ablation.
        J Am Coll Cardiol. 2018; 4: 977-986
        • Lustgarten D.
        • Bell S.
        • Hardin N.
        • et al.
        Safety and efficacy of epicardial cryoablation in a canine model.
        Heart Rhythm. 2005; 2: 82-90
        • Witt C.
        • Livia C.
        • Witt T.
        • et al.
        Electroporative myocardial ablation utilizing a non-contact, Virtual electrode: proof of concept in ex-vivo and in-vivo canine hearts heart Rhythm.
        . 2017; 14: S144-S234