Advertisement

Best Practices for the Catheter Ablation of Ventricular Arrhythmias

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cardiac Electrophysiology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Cronin E.M.
        • Bogun F.M.
        • Maury P.
        • et al.
        2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias: Executive summary.
        Heart Rhythm. 2020; 17: e155-e205
        • Moss A.J.
        • Hall W.J.
        • Cannom D.S.
        • et al.
        Improved survival with an implanted defibrillator in patients with coronary disease at high risk for ventricular arrhythmia. Multicenter Automatic Defibrillator Implantation Trial Investigators.
        N Engl J Med. 1996; 335: 1933-1940
      1. Antiarrhythmics versus Implantable Defibrillators (AVID) Investigators A comparison of antiarrhythmic-drug therapy with implantable defibrillators in patients resuscitated from near-fatal ventricular arrhythmias.
        N Engl J Med. 1997; 337: 1576-1583
        • Buxton A.E.
        • Lee K.L.
        • Fisher J.D.
        • et al.
        A randomized study of the prevention of sudden death in patients with coronary artery disease. Multicenter Unsustained Tachycardia Trial Investigators.
        N Engl J Med. 1999; 341: 1882-1890
        • Greenberg H.
        • Case R.B.
        • Moss A.J.
        • et al.
        Analysis of mortality events in the multicenter automatic defibrillator implantation trial (MADIT-II).
        J Am Coll Cardiol. 2004; 43: 1459-1465
        • Bardy G.H.
        • Lee K.L.
        • Mark D.B.
        • et al.
        Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure.
        N Engl J Med. 2005; 352: 225-237
        • Al-Khatib S.M.
        • Stevenson W.G.
        • Ackerman M.J.
        • et al.
        2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American heart association Task force on clinical practice Guidelines and the heart rhythm Society.
        Heart Rhythm. 2018; 15: e73-e189
        • Vaseghi M.
        • Hu T.Y.
        • Tung R.
        • et al.
        Outcomes of catheter ablation of ventricular tachycardia based on etiology in nonischemic heart disease: an International ventricular tachycardia ablation center Collaborative study.
        JACC Clin Electrophysiol. 2018; 4: 1141-1150
        • Mukherjee R.K.
        • Whitaker J.
        • Williams S.E.
        • et al.
        Magnetic resonance imaging guidance for the optimization of ventricular tachycardia ablation.
        Europace. 2018; 20: 1721-1732
        • Ghannam M.
        • Liang J.J.
        • Attili A.
        • et al.
        Cardiac magnetic resonance imaging and ventricular tachycardias involving the Sinuses of Valsalva in patients with nonischemic cardiomyopathy.
        JACC Clin Electrophysiol. 2021; 7: 1243-1253
        • Muser D.
        • Nucifora G.
        • Castro S.A.
        • et al.
        Myocardial substrate characterization by CMR T1 mapping in patients with NICM and No LGE undergoing catheter ablation of VT.
        JACC Clin Electrophysiol. 2021; 7: 831-840
        • Maccabelli G.
        • Tsiachris D.
        • Silberbauer J.
        • et al.
        Imaging and epicardial substrate ablation of ventricular tachycardia in patients late after myocarditis.
        Europace. 2014; 16: 1363-1372
        • Lukas Laws J.
        • Lancaster M.C.
        • Ben Shoemaker M.
        • et al.
        Arrhythmias as Presentation of genetic cardiomyopathy.
        Circ Res. 2022; 130: 1698-1722
        • Thachil A.
        • Christopher J.
        • Sastry B.K.S.
        • et al.
        Monomorphic ventricular tachycardia and mediastinal adenopathy due to granulomatous infiltration in patients with preserved ventricular function.
        J Am Coll Cardiol. 2011; 58: 48-55
        • Muser D.
        • Santangeli P.
        • Castro S.A.
        • et al.
        Risk stratification of patients with apparently idiopathic premature ventricular contractions: a multicenter International CMR Registry.
        JACC Clin Electrophysiol. 2020; 6: 722-735
        • Park K.-M.
        • Kim Y.-H.
        • Marchlinski F.E.
        Using the surface electrocardiogram to localize the origin of idiopathic ventricular tachycardia.
        Pacing Clin Electrophysiol. 2012; 35: 1516-1527
        • de Riva M.
        • Watanabe M.
        • Zeppenfeld K.
        Twelve-lead ECG of ventricular tachycardia in structural heart disease.
        Circ Arrhythm Electrophysiol. 2015; 8: 951-962
        • Enriquez A.
        • Baranchuk A.
        • Briceno D.
        • et al.
        How to use the 12-lead ECG to predict the site of origin of idiopathic ventricular arrhythmias.
        Heart Rhythm. 2019; 16: 1538-1544
        • Tanawuttiwat T.
        • Nazarian S.
        • Calkins H.
        The role of catheter ablation in the management of ventricular tachycardia.
        Eur Heart J. 2016; 37: 594-609
        • Miller J.M.
        • Marchlinski F.E.
        • Buxton A.E.
        • et al.
        Relationship between the 12-lead electrocardiogram during ventricular tachycardia and endocardial site of origin in patients with coronary artery disease.
        Circulation. 1988; 77: 759-766
        • Kuchar D.L.
        • Ruskin J.N.
        • Garan H.
        Electrocardiographic localization of the site of origin of ventricular tachycardia in patients with prior myocardial infarction.
        J Am Coll Cardiol. 1989; 13: 893-903
        • Segal O.R.
        • Chow A.W.C.
        • Wong T.
        • et al.
        A novel algorithm for determining endocardial VT exit site from 12-lead surface ECG characteristics in human, infarct-related ventricular tachycardia.
        J Cardiovasc Electrophysiol. 2007; 18: 161-168
        • Yokokawa M.
        • Liu T.-Y.
        • Yoshida K.
        • et al.
        Automated analysis of the 12-lead electrocardiogram to identify the exit site of postinfarction ventricular tachycardia.
        Heart Rhythm. 2012; 9: 330-334
        • Sapp J.L.
        • Bar-Tal M.
        • Howes A.J.
        • et al.
        Real-time localization of ventricular tachycardia origin from the 12-lead electrocardiogram.
        JACC Clin Electrophysiol. 2017; 3: 687-699
        • Zhou S.
        • AbdelWahab A.
        • Horáček B.M.
        • et al.
        Prospective assessment of an automated intraprocedural 12-lead ECG-based system for localization of early left ventricular activation.
        Circ Arrhythm Electrophysiol. 2020; 13: e008262
        • Berruezo A.
        • Mont L.
        • Nava S.
        • et al.
        Electrocardiographic recognition of the epicardial origin of ventricular tachycardias.
        Circulation. 2004; 109: 1842-1847
        • Daniels D.V.
        • Lu Y.-Y.
        • Morton J.B.
        • et al.
        Idiopathic epicardial left ventricular tachycardia originating remote from the sinus of Valsalva: electrophysiological characteristics, catheter ablation, and identification from the 12-lead electrocardiogram.
        Circulation. 2006; 113: 1659-1666
        • Bazan V.
        • Gerstenfeld E.P.
        • Garcia F.C.
        • et al.
        Site-specific twelve-lead ECG features to identify an epicardial origin for left ventricular tachycardia in the absence of myocardial infarction.
        Heart Rhythm. 2007; 4: 1403-1410
        • Vallès E.
        • Bazan V.
        • Marchlinski F.E.
        ECG criteria to identify epicardial ventricular tachycardia in nonischemic cardiomyopathy.
        Circ Arrhythm Electrophysiol. 2010; 3: 63-71
        • Steinberg J.S.
        • Varma N.
        • Cygankiewicz I.
        • et al.
        2017 ISHNE-HRS expert consensus statement on ambulatory ECG and external cardiac monitoring/telemetry.
        Heart Rhythm. 2017; 14: e55-e96
        • Yoshida K.
        • Liu T.-Y.
        • Scott C.
        • et al.
        The value of defibrillator electrograms for recognition of clinical ventricular tachycardias and for pace mapping of post-infarction ventricular tachycardia.
        J Am Coll Cardiol. 2010; 56: 969-979
        • Tschabrunn C.M.
        • Anter E.
        • Marchlinski F.E.
        Identifying non-inducible ventricular tachycardia origin utilizing defibrillator electrograms.
        J Interv Card Electrophysiol. 2013; 36: 243-246
        • Yokokawa M.
        • Kim H.M.
        • Sharaf Dabbagh G.
        • et al.
        Targeting Noninducible clinical ventricular tachycardias in patients with prior myocardial infarctions based on stored electrograms.
        Circ Arrhythm Electrophysiol. 2019; 12: e006978
        • J Shah A.
        • Hocini M.
        • Pascale P.
        • et al.
        Body surface electrocardiographic mapping for non-invasive identification of arrhythmic sources.
        Arrhythm Electrophysiol Rev. 2013; 2: 16-22
        • Wang Y.
        • Cuculich P.S.
        • Zhang J.
        • et al.
        Noninvasive electroanatomic mapping of human ventricular arrhythmias with electrocardiographic imaging.
        Sci Transl Med. 2011; 3 (98ra84)
        • Rudy Y.
        Noninvasive electrocardiographic imaging of arrhythmogenic substrates in humans.
        Circ Res. 2013; 112: 863-874
        • Varma N.
        • Strom M.
        • Chung M.K.
        Noninvasive voltage and activation mapping of ARVD/C using ECG imaging.
        JACC Cardiovasc Imaging. 2013; 6: 1346-1347
        • Zhang J.
        • Cooper D.H.
        • Desouza K.A.
        • et al.
        Electrophysiologic scar substrate in relation to VT: Noninvasive high-resolution mapping and risk assessment with ECGI.
        Pacing Clin Electrophysiol. 2016; 39: 781-791
        • Njeim M.
        • Desjardins B.
        • Bogun F.
        Multimodality imaging for guiding EP ablation procedures.
        JACC Cardiovasc Imaging. 2016; 9: 873-886
        • Esposito A.
        • Palmisano A.
        • Antunes S.
        • et al.
        Cardiac CT with delayed enhancement in the characterization of ventricular tachycardia structural substrate: relationship between CT-Segmented scar and electro-anatomic mapping.
        JACC Cardiovasc Imaging. 2016; 9: 822-832
        • Desjardins B.
        • Morady F.
        • Bogun F.
        Effect of epicardial fat on electroanatomical mapping and epicardial catheter ablation.
        J Am Coll Cardiol. 2010; 56: 1320-1327
        • Cheniti G.
        • Sridi S.
        • Sacher F.
        • et al.
        Post-myocardial infarction scar with fat Deposition shows specific electrophysiological Properties and Worse outcome after ventricular tachycardia ablation.
        J Am Heart Assoc. 2019; 8: e012482
        • Alyesh D.M.
        • Siontis K.C.
        • Sharaf Dabbagh G.
        • et al.
        Postinfarction myocardial calcifications on cardiac computed tomography: implications for mapping and ablation in patients with Nontolerated ventricular tachycardias.
        Circ Arrhythm Electrophysiol. 2019; 12: e007023
        • Ghannam M.
        • Cochet H.
        • Jais P.
        • et al.
        Correlation between computer tomography-derived scar topography and critical ablation sites in postinfarction ventricular tachycardia.
        J Cardiovasc Electrophysiol. 2018; 29: 438-445
        • Takigawa M.
        • Duchateau J.
        • Sacher F.
        • et al.
        Are wall thickness channels defined by computed tomography predictive of isthmuses of postinfarction ventricular tachycardia?.
        Heart Rhythm. 2019; 16: 1661-1668
        • Piers S.R.D.
        • van Huls van Taxis C.F.B.
        • Tao Q.
        • et al.
        Epicardial substrate mapping for ventricular tachycardia ablation in patients with non-ischaemic cardiomyopathy: a new algorithm to differentiate between scar and viable myocardium developed by simultaneous integration of computed tomography and contrast-enhanced magnetic resonance imaging.
        Eur Heart J. 2013; 34: 586-596
        • Baman T.S.
        • Ilg K.J.
        • Gupta S.K.
        • et al.
        Mapping and ablation of epicardial idiopathic ventricular arrhythmias from within the coronary venous system.
        Circ Arrhythm Electrophysiol. 2010; 3: 274-279
        • Carrigan T.P.
        • Patel S.
        • Yokokawa M.
        • et al.
        Anatomic relationships between the coronary venous system, surrounding structures, and the site of origin of epicardial ventricular arrhythmias.
        J Cardiovasc Electrophysiol. 2014; 25: 1336-1342
        • Yamashita S.
        • Sacher F.
        • Mahida S.
        • et al.
        Role of high-resolution image integration to visualize left phrenic nerve and coronary arteries during epicardial ventricular tachycardia ablation.
        Circ Arrhythm Electrophysiol. 2015; 8: 371-380
        • Subramanian M.
        • Ravilla V.V.
        • Yalagudri S.
        • et al.
        CT-guided percutaneous epicardial access for ventricular tachycardia ablation: a proof-of-concept study.
        J Cardiovasc Electrophysiol. 2021; 32: 2665-2672
        • Bogun F.M.
        • Desjardins B.
        • Good E.
        • et al.
        Delayed-enhanced magnetic resonance imaging in nonischemic cardiomyopathy: utility for identifying the ventricular arrhythmia substrate.
        J Am Coll Cardiol. 2009; 53: 1138-1145
        • Desjardins B.
        • Yokokawa M.
        • Good E.
        • et al.
        Characteristics of intramural scar in patients with nonischemic cardiomyopathy and relation to intramural ventricular arrhythmias.
        Circ Arrhythm Electrophysiol. 2013; 6: 891-897
        • Yamashita S.
        • Sacher F.
        • Mahida S.
        • et al.
        Image integration to guide catheter ablation in scar-related ventricular tachycardia.
        J Cardiovasc Electrophysiol. 2016; 27: 699-708
        • Piers S.R.D.
        • Tao Q.
        • de Riva Silva M.
        • et al.
        CMR-based identification of critical isthmus sites of ischemic and nonischemic ventricular tachycardia.
        JACC Cardiovasc Imaging. 2014; 7: 774-784
        • Perin E.C.
        • Silva G.V.
        • Sarmento-Leite R.
        • et al.
        Assessing myocardial viability and infarct transmurality with left ventricular electromechanical mapping in patients with stable coronary artery disease: validation by delayed-enhancement magnetic resonance imaging.
        Circulation. 2002; 106: 957-961
        • Desjardins B.
        • Crawford T.
        • Good E.
        • et al.
        Infarct architecture and characteristics on delayed enhanced magnetic resonance imaging and electroanatomic mapping in patients with postinfarction ventricular arrhythmia.
        Heart Rhythm. 2009; 6: 644-651
        • Codreanu A.
        • Odille F.
        • Aliot E.
        • et al.
        Electroanatomic characterization of post-infarct scars comparison with 3-dimensional myocardial scar reconstruction based on magnetic resonance imaging.
        J Am Coll Cardiol. 2008; 52: 839-842
        • Cochet H.
        • Komatsu Y.
        • Sacher F.
        • et al.
        Integration of merged delayed-enhanced magnetic resonance imaging and multidetector computed tomography for the guidance of ventricular tachycardia ablation: a pilot study.
        J Cardiovasc Electrophysiol. 2013; 24: 419-426
        • van Huls van Taxis C.F.
        • Wijnmaalen A.P.
        • Piers S.R.
        • et al.
        Real-time integration of MDCT-derived coronary anatomy and epicardial fat: impact on epicardial electroanatomic mapping and ablation for ventricular arrhythmias.
        JACC Cardiovasc Imaging. 2013; 6: 42-52
        • Gormsen L.C.
        • Haraldsen A.
        • Kramer S.
        • et al.
        A dual tracer (68)Ga-DOTANOC PET/CT and (18)F-FDG PET/CT pilot study for detection of cardiac sarcoidosis.
        EJNMMI Res. 2016; 6: 52
        • Subramanian M.
        • Swapna N.
        • Ali A.Z.
        • et al.
        Pre-treatment myocardial 18FDG uptake predicts response to immunosuppression in patients with cardiac sarcoidosis.
        JACC Cardiovasc Imaging. 2021; 14: 2008-2016
        • Tung R.
        • Bauer B.
        • Schelbert H.
        • et al.
        Incidence of abnormal positron emission tomography in patients with unexplained cardiomyopathy and ventricular arrhythmias: the potential role of occult inflammation in arrhythmogenesis.
        Heart Rhythm. 2015; 12: 2488-2498
        • Lakkireddy D.
        • Turagam M.K.
        • Yarlagadda B.
        • et al.
        Myocarditis causing premature ventricular contractions: Insights from the MAVERIC Registry.
        Circ Arrhythm Electrophysiol. 2019; 12: e007520
        • Muser D.
        • Tritto M.
        • Mariani M.V.
        • et al.
        Diagnosis and treatment of idiopathic premature ventricular contractions: a stepwise approach based on the site of origin.
        Diagnostics (Basel). 2021; 11: 1840
        • Sabzwari S.R.A.
        • Rosenberg M.A.
        • Mann J.
        • et al.
        Limitations of unipolar signals in guiding successful outflow tract premature ventricular contraction ablation.
        JACC Clin Electrophysiol. 2022; 8: 843-853
        • Yamada T.
        • McElderry H.T.
        • Doppalapudi H.
        • et al.
        Idiopathic ventricular arrhythmias originating from the left ventricular summit: anatomic concepts relevant to ablation.
        Circ Arrhythm Electrophysiol. 2010; 3: 616-623
        • Kawamura M.
        • Gerstenfeld E.P.
        • Vedantham V.
        • et al.
        Idiopathic ventricular arrhythmia originating from the cardiac crux or inferior septum: epicardial idiopathic ventricular arrhythmia.
        Circ Arrhythm Electrophysiol. 2014; 7: 1152-1158
        • Muser D.
        • Santangeli P.
        Epicardial ablation of idiopathic ventricular tachycardia.
        Card Electrophysiol Clin. 2020; 12: 295-312
        • Shinoda Y.
        • Komatsu Y.
        • Nogami A.
        • et al.
        Stepwise approach to induce infrequent premature ventricular complex using bolus isoproterenol and epinephrine infusion.
        Pacing Clin Electrophysiol. 2020; 43: 437-443
        • Gopi A.
        • Nair S.G.
        • Shelke A.
        • et al.
        A stepwise approach to the induction of idiopathic fascicular ventricular tachycardia.
        J Interv Card Electrophysiol. 2015; 44: 17-22
        • Azegami K.
        • Wilber D.J.
        • Arruda M.
        • et al.
        Spatial resolution of pacemapping and activation mapping in patients with idiopathic right ventricular outflow tract tachycardia.
        J Cardiovasc Electrophysiol. 2005; 16: 823-829
        • Bennett R.
        • Campbell T.
        • Kotake Y.
        • et al.
        Catheter ablation of idiopathic outflow tract ventricular arrhythmias with low intraprocedural burden guided by pace mapping.
        Heart Rhythm. 2021; 2: 355-364
        • Briceño D.F.
        • Liang J.J.
        • Shirai Y.
        • et al.
        Clinical and electrophysiological characteristics of idiopathic ventricular arrhythmias originating from the slow pathway region.
        Heart Rhythm. 2019; 16: 1421-1428
        • Enriquez A.
        • Tapias C.
        • Rodriguez D.
        • et al.
        How to map and ablate parahisian ventricular arrhythmias.
        Heart Rhythm. 2018; 15: 1268-1274
        • Mariani M.V.
        • Piro A.
        • Magnocavallo M.
        • et al.
        Catheter ablation for papillary muscle arrhythmias: a systematic review.
        Pacing Clin Electrophysiol. 2022; 45: 519-531
        • Tschabrunn C.M.
        • Santangeli P.
        Maximizing papillary muscle radiofrequency ablation size: Importance of catheter orientation.
        J Cardiovasc Electrophysiol. 2022; 33: 696-697
        • Gordon J.P.
        • Liang J.J.
        • Pathak R.K.
        • et al.
        Percutaneous cryoablation for papillary muscle ventricular arrhythmias after failed radiofrequency catheter ablation.
        J Cardiovasc Electrophysiol. 2018; 29: 1654-1663
        • Di Biase L.
        • Al-Ahamad A.
        • Santangeli P.
        • et al.
        Safety and outcomes of cryoablation for ventricular tachyarrhythmias: results from a multicenter experience.
        Heart Rhythm. 2011; 8: 968-974
        • Campbell T.
        • Bennett R.G.
        • Kumar S.
        Intracardiac echocardiography to guide the ablation of parahisian arrhythmias.
        Card Electrophysiol Clin. 2021; 13: e1-e16
        • Enriquez A.
        • Saenz L.C.
        • Rosso R.
        • et al.
        Use of intracardiac echocardiography in interventional Cardiology: Working with the anatomy rather than Fighting it.
        Circulation. 2018; 137: 2278-2294
        • Whitaker J.
        • Batnyam U.
        • Kapur S.
        • et al.
        Safety and efficacy of cryoablation for right ventricular moderator band-papillary muscle complex ventricular arrhythmias.
        JACC Clin Electrophysiol. 2022; 8: 857-868
        • Hsia H.H.
        • Lin D.
        • Sauer W.H.
        • et al.
        Anatomic characterization of endocardial substrate for hemodynamically stable reentrant ventricular tachycardia: identification of endocardial conducting channels.
        Heart Rhythm. 2006; 3: 503-512
        • Frontera A.
        • Pagani S.
        • Limite L.R.
        • et al.
        Outer loop and isthmus in ventricular tachycardia circuits: characteristics and implications.
        Heart Rhythm. 2020; 17: 1719-1728
        • Martin R.
        • Hocini M.
        • Haïsaguerre M.
        • et al.
        Ventricular tachycardia isthmus characteristics: Insights from high-density mapping.
        Arrhythm Electrophysiol Rev. 2019; 8: 54-59
        • Ciaccio E.J.
        • Anter E.
        • Coromilas J.
        • et al.
        Structure and function of the ventricular tachycardia isthmus.
        Heart Rhythm. 2022; 19: 137-153
        • Sapp J.L.
        • Wells G.A.
        • Parkash R.
        • et al.
        Ventricular tachycardia ablation versus Escalation of antiarrhythmic drugs.
        N Engl J Med. 2016; 375: 111-121
        • Arenal Á.
        • Ávila P.
        • Jiménez-Candil J.
        • et al.
        Substrate ablation vs antiarrhythmic drug therapy for Symptomatic ventricular tachycardia.
        J Am Coll Cardiol. 2022; 79: 1441-1453
        • Reddy V.Y.
        • Reynolds M.R.
        • Neuzil P.
        • et al.
        Prophylactic catheter ablation for the prevention of defibrillator therapy.
        N Engl J Med. 2007; 357: 2657-2665
        • Willems S.
        • Tilz R.R.
        • Steven D.
        • et al.
        Preventive or Deferred ablation of ventricular tachycardia in patients with ischemic cardiomyopathy and implantable defibrillator (BERLIN VT): a multicenter randomized trial.
        Circulation. 2020; 141: 1057-1067
        • Atti V.
        • Vuddanda V.
        • Turagam M.K.
        • et al.
        Prophylactic catheter ablation of ventricular tachycardia in ischemic cardiomyopathy: a systematic review and meta-analysis of randomized controlled trials.
        J Interv Card Electrophysiol. 2018; 53: 207-215
        • Stevenson W.G.
        • Sager P.T.
        • Natterson P.D.
        • et al.
        Relation of pace mapping QRS configuration and conduction delay to ventricular tachycardia reentry circuits in human infarct scars.
        J Am Coll Cardiol. 1995; 26: 481-488
        • Sadek M.M.
        • Schaller R.D.
        • Supple G.E.
        • et al.
        Ventricular tachycardia ablation - the right approach for the right patient.
        Arrhythm Electrophysiol Rev. 2014; 3: 161-167
        • Nayyar S.
        • Wilson L.
        • Ganesan A.N.
        • et al.
        High-density mapping of ventricular scar: a comparison of ventricular tachycardia (VT) supporting channels with channels that do not support VT.
        Circ Arrhythm Electrophysiol. 2014; 7: 90-98
        • de Chillou C.
        • Groben L.
        • Magnin-Poull I.
        • et al.
        Localizing the critical isthmus of postinfarct ventricular tachycardia: the value of pace-mapping during sinus rhythm.
        Heart Rhythm. 2014; 11: 175-181
        • de Chillou C.
        • Sellal J.-M.
        • Magnin-Poull I.
        Pace mapping to localize the critical isthmus of ventricular tachycardia.
        Card Electrophysiol Clin. 2017; 9: 71-80
        • Bogun F.
        • Good E.
        • Reich S.
        • et al.
        Role of Purkinje fibers in post-infarction ventricular tachycardia.
        J Am Coll Cardiol. 2006; 48: 2500-2507
        • Stevenson W.G.
        • Wilber D.J.
        • Natale A.
        • et al.
        Irrigated radiofrequency catheter ablation guided by electroanatomic mapping for recurrent ventricular tachycardia after myocardial infarction: the multicenter thermocool ventricular tachycardia ablation trial.
        Circulation. 2008; 118: 2773-2782
        • Dukkipati S.R.
        • Koruth J.S.
        • Choudry S.
        • et al.
        Catheter ablation of ventricular tachycardia in structural heart disease: indications, strategies, and outcomes-Part II.
        J Am Coll Cardiol. 2017; 70: 2924-2941
        • Shirai Y.
        • Liang J.J.
        • Santangeli P.
        • et al.
        Comparison of the ventricular tachycardia circuit between patients with ischemic and nonischemic cardiomyopathies: Detailed characterization by entrainment.
        Circ Arrhythm Electrophysiol. 2019; 12: e007249
        • Richardson T.D.
        • Kanagasundram A.N.
        • Stevenson W.G.
        Epicardial ablation of ventricular tachycardia in ischemic cardiomyopathy.
        Card Electrophysiol Clin. 2020; 12: 313-319
        • Acosta J.
        • Fernández-Armenta J.
        • Penela D.
        • et al.
        Infarct transmurality as a criterion for first-line endo-epicardial substrate-guided ventricular tachycardia ablation in ischemic cardiomyopathy.
        Heart Rhythm. 2016; 13: 85-95
        • Di Biase L.
        • Santangeli P.
        • Burkhardt D.J.
        • et al.
        Endo-epicardial homogenization of the scar versus limited substrate ablation for the treatment of electrical storms in patients with ischemic cardiomyopathy.
        J Am Coll Cardiol. 2012; 60: 132-141
        • Tung R.
        • Michowitz Y.
        • Yu R.
        • et al.
        Epicardial ablation of ventricular tachycardia: an institutional experience of safety and efficacy.
        Heart Rhythm. 2013; 10: 490-498
        • Romero J.
        • Cerrud-Rodriguez R.C.
        • Di Biase L.
        • et al.
        Combined endocardial-epicardial versus endocardial catheter ablation alone for ventricular tachycardia in structural heart disease: a systematic review and meta-analysis.
        JACC Clin Electrophysiol. 2019; 5: 13-24
        • Kuo L.
        • Liang J.J.
        • Nazarian S.
        • et al.
        Multimodality imaging to guide ventricular tachycardia ablation in patients with non-ischaemic cardiomyopathy.
        Arrhythm Electrophysiol Rev. 2020; 8: 255-264
        • Bhaskaran A.
        • Tung R.
        • Stevenson W.G.
        • et al.
        Catheter ablation of VT in non-ischaemic cardiomyopathies: endocardial, epicardial and intramural approaches.
        Heart Lung Circ. 2019; 28: 84-101
        • Servatius H.
        • Höfeler T.
        • Hoffmann B.A.
        • et al.
        Propofol sedation administered by cardiologists for patients undergoing catheter ablation for ventricular tachycardia.
        Europace. 2016; 18: 1245-1251
        • Wutzler A.
        • Mueller A.
        • Loehr L.
        • et al.
        Minimal and deep sedation during ablation of ventricular tachycardia.
        Int J Cardiol. 2014; 172: 161-164
        • Lü F.
        • Lin J.
        • Benditt D.G.
        Conscious sedation and anesthesia in the cardiac electrophysiology laboratory.
        J Cardiovasc Electrophysiol. 2013; 24: 237-245
        • Mulpuru S.K.
        • Patel D.V.
        • Wilbur S.L.
        • et al.
        Electrical storm and termination with propofol therapy: a case report.
        Int J Cardiol. 2008; 128: e6-e8
        • Nof E.
        • Reichlin T.
        • Enriquez A.D.
        • et al.
        Impact of general anesthesia on initiation and stability of VT during catheter ablation.
        Heart Rhythm. 2015; 12: 2213-2220
        • Mandel J.E.
        • Hutchinson M.D.
        • Marchlinski F.E.
        Remifentanil-midazolam sedation provides hemodynamic stability and comfort during epicardial ablation of ventricular tachycardia.
        J Cardiovasc Electrophysiol. 2011; 22: 464-466
        • Nazer B.
        • Woods C.
        • Dewland T.
        • et al.
        Importance of ventricular tachycardia induction and mapping for patients Referred for epicardial ablation.
        Pacing Clin Electrophysiol. 2015; 38: 1333-1342
        • Sharma P.S.
        • Padala S.K.
        • Gunda S.
        • et al.
        Vascular complications during catheter ablation of cardiac arrhythmias: a comparison between vascular ultrasound guided access and Conventional vascular access.
        J Cardiovasc Electrophysiol. 2016; 27: 1160-1166
        • Sobolev M.
        • Shiloh A.L.
        • Di Biase L.
        • et al.
        Ultrasound-guided cannulation of the femoral vein in electrophysiological procedures: a systematic review and meta-analysis.
        Europace. 2017; 19: 850-855
        • Bohnen M.
        • Stevenson W.G.
        • Tedrow U.B.
        • et al.
        Incidence and predictors of major complications from contemporary catheter ablation to treat cardiac arrhythmias.
        Heart Rhythm. 2011; 8: 1661-1666
        • Han S.
        • Park H.-W.
        • Lee Y.S.
        • et al.
        Catheter ablation of left ventricular tachycardia through internal jugular vein: refining the continuous line.
        J Cardiovasc Electrophysiol. 2013; 24: 596-599
        • Singh S.M.
        • Neuzil P.
        • Skoka J.
        • et al.
        Percutaneous transhepatic venous access for catheter ablation procedures in patients with interruption of the inferior vena cava.
        Circ Arrhythm Electrophysiol. 2011; 4: 235-241
        • Tilz R.R.
        • Makimoto H.
        • Lin T.
        • et al.
        In vivo left-ventricular contact force analysis: comparison of antegrade transseptal with retrograde transaortic mapping strategies and correlation of impedance and electrical amplitude with contact force.
        Europace. 2014; 16: 1387-1395
        • Ouyang F.
        • Mathew S.
        • Wu S.
        • et al.
        Ventricular arrhythmias arising from the left ventricular outflow tract below the aortic sinus cusps: mapping and catheter ablation via transseptal approach and electrocardiographic characteristics.
        Circ Arrhythm Electrophysiol. 2014; 7: 445-455
        • Pluta S.
        • Lenarczyk R.
        • Pruszkowska-Skrzep P.
        • et al.
        Transseptal versus transaortic approach for radiofrequency ablation in patients with cardioverter-defibrillator and electrical storm.
        J Interv Card Electrophysiol. 2010; 28: 45-50
        • Pratola C.
        • Baldo E.
        • Notarstefano P.
        • et al.
        Feasibility of the transseptal approach for fast and unstable left ventricular tachycardia mapping and ablation with a non-contact mapping system.
        J Interv Card Electrophysiol. 2006; 16: 111-116
        • Whitman I.R.
        • Gladstone R.A.
        • Badhwar N.
        • et al.
        Brain Emboli after left ventricular endocardial ablation.
        Circulation. 2017; 135: 867-877
        • Hsieh C.H.C.
        • Thomas S.P.
        • Ross D.L.
        Direct transthoracic access to the left ventricle for catheter ablation of ventricular tachycardia.
        Circ Arrhythm Electrophysiol. 2010; 3: 178-185
        • Li A.
        • Hayase J.
        • Do D.
        • et al.
        Hybrid surgical vs percutaneous access epicardial ventricular tachycardia ablation.
        Heart Rhythm. 2018; 15: 512-519
        • Koya T.
        • Watanabe M.
        • Kamada R.
        • et al.
        Hybrid epicardial ventricular tachycardia ablation with lateral thoracotomy in a patient with a history of left ventricular reconstruction surgery.
        J Cardiol Cases. 2022; 25: 37-41
        • Soejima K.
        • Nogami A.
        • Sekiguchi Y.
        • et al.
        Epicardial catheter ablation of ventricular tachycardia in no entry left ventricle: mechanical aortic and mitral valves.
        Circ Arrhythm Electrophysiol. 2015; 8: 381-389
        • Vaseghi M.
        • Macias C.
        • Tung R.
        • et al.
        Percutaneous interventricular septal access in a patient with aortic and mitral mechanical valves: a novel technique for catheter ablation of ventricular tachycardia.
        Heart Rhythm. 2013; 10: 1069-1073
        • Santangeli P.
        • Shaw G.C.
        • Marchlinski F.E.
        Radiofrequency wire Facilitated interventricular septal access for catheter ablation of ventricular tachycardia in a patient with aortic and mitral mechanical valves.
        Circ Arrhythm Electrophysiol. 2017; 10: e004771
        • Santangeli P.
        • Hyman M.C.
        • Muser D.
        • et al.
        Outcomes of percutaneous trans-right atrial access to the left ventricle for catheter ablation of ventricular tachycardia in patients with mechanical aortic and mitral valves.
        JAMA Cardiol. 2020; https://doi.org/10.1001/jamacardio.2020.4414
        • Santangeli P.
        Right atrium to left ventricle puncture for VT ablation in patients with mechanical aortic and mitral valves: a step-by-step approach.
        J Cardiovasc Electrophysiol. 2022; https://doi.org/10.1111/jce.15467
        • Guandalini G.S.
        • Liang J.J.
        • Marchlinski F.E.
        Ventricular tachycardia ablation: past, present, and future perspectives.
        JACC Clin Electrophysiol. 2019; 5: 1363-1383
        • Compagnucci P.
        • Volpato G.
        • Falanga U.
        • et al.
        Recent advances in three-dimensional electroanatomical mapping guidance for the ablation of complex atrial and ventricular arrhythmias.
        J Interv Card Electrophysiol. 2021; 61: 37-43
        • De Potter T.
        • Iliodromitis K.
        • Bar-On T.
        • et al.
        Premature ventricular contractions cause a position shift in 3D mapping systems: analysis, quantification, and correction by hybrid activation mapping.
        Europace. 2020; 22: 607-612
        • Miller J.D.
        • Dewland T.A.
        • Henrikson C.A.
        • et al.
        Point density exclusion electroanatomic mapping for ventricular arrhythmias arising from endocavitary structures.
        Heart Rhythm. 2020; 1: 394-398
        • Prabhu M.A.
        • Saravanan S.
        • Valaparambil A.K.
        • et al.
        Point density exclusion mapping-A useful tool for mapping arrhythmias arising from the endocavitary structures.
        J Arrhythm. 2021; 37: 1371-1373
        • Stevenson W.G.
        • Khan H.
        • Sager P.
        • et al.
        Identification of reentry circuit sites during catheter mapping and radiofrequency ablation of ventricular tachycardia late after myocardial infarction.
        Circulation. 1993; 88: 1647-1670
        • Stevenson W.G.
        • Friedman P.L.
        • Sager P.T.
        • et al.
        Exploring postinfarction reentrant ventricular tachycardia with entrainment mapping.
        J Am Coll Cardiol. 1997; 29: 1180-1189
        • Bogun F.
        • Bahu M.
        • Knight B.P.
        • et al.
        Comparison of effective and ineffective target sites that demonstrate concealed entrainment in patients with coronary artery disease undergoing radiofrequency ablation of ventricular tachycardia.
        Circulation. 1997; 95: 183-190
        • Xie S.
        • Kubala M.
        • Liang J.J.
        • et al.
        Utility of ripple mapping for identification of slow conduction channels during ventricular tachycardia ablation in the setting of arrhythmogenic right ventricular cardiomyopathy.
        J Cardiovasc Electrophysiol. 2019; 30: 366-373
        • Katritsis G.
        • Luther V.
        • Kanagaratnam P.
        • et al.
        Arrhythmia mechanisms revealed by ripple mapping.
        Arrhythm Electrophysiol Rev. 2018; 7: 261-264
        • Hoshiyama T.
        • Nagakura T.
        • Kanazawa H.
        • et al.
        Coherent mapping helps identify abnormal potentials and improves the treatment of multiple ventricular tachycardia: a case report.
        Heartrhythm Case Rep. 2021; 7: 408-412
        • Sciacca V.
        • Fink T.
        • Bergau L.
        • et al.
        Combination of high-density and Coherent mapping for ablation of ventricular arrhythmia in patients with structural heart disease.
        J Clin Med. 2022; 11: 2418
        • Hawson J.
        • Anderson R.D.
        • Al-Kaisey A.
        • et al.
        Functional assessment of ventricular tachycardia circuits and Their underlying substrate using automated conduction velocity mapping.
        JACC Clin Electrophysiol. 2022; 8: 480-494
        • Marchlinski F.E.
        • Callans D.J.
        • Gottlieb C.D.
        • et al.
        Linear ablation lesions for control of unmappable ventricular tachycardia in patients with ischemic and nonischemic cardiomyopathy.
        Circulation. 2000; 101: 1288-1296
        • Soejima K.
        • Suzuki M.
        • Maisel W.H.
        • et al.
        Catheter ablation in patients with multiple and unstable ventricular tachycardias after myocardial infarction: short ablation lines guided by reentry circuit isthmuses and sinus rhythm mapping.
        Circulation. 2001; 104: 664-669
        • Verma A.
        • Kilicaslan F.
        • Schweikert R.A.
        • et al.
        Short- and long-term success of substrate-based mapping and ablation of ventricular tachycardia in arrhythmogenic right ventricular dysplasia.
        Circulation. 2005; 111: 3209-3216
        • Arenal A.
        • Glez-Torrecilla E.
        • Ortiz M.
        • et al.
        Ablation of electrograms with an isolated, delayed component as treatment of unmappable monomorphic ventricular tachycardias in patients with structural heart disease.
        J Am Coll Cardiol. 2003; 41: 81-92
        • Volkmer M.
        • Ouyang F.
        • Deger F.
        • et al.
        Substrate mapping vs. tachycardia mapping using CARTO in patients with coronary artery disease and ventricular tachycardia: impact on outcome of catheter ablation.
        Europace. 2006; 8: 968-976
        • Nogami A.
        • Sugiyasu A.
        • Tada H.
        • et al.
        Changes in the isolated delayed component as an endpoint of catheter ablation in arrhythmogenic right ventricular cardiomyopathy: predictor for long-term success.
        J Cardiovasc Electrophysiol. 2008; 19: 681-688
        • Garcia F.C.
        • Bazan V.
        • Zado E.S.
        • et al.
        Epicardial substrate and outcome with epicardial ablation of ventricular tachycardia in arrhythmogenic right ventricular cardiomyopathy/dysplasia.
        Circulation. 2009; 120: 366-375
        • Bai R.
        • Di Biase L.
        • Shivkumar K.
        • et al.
        Ablation of ventricular arrhythmias in arrhythmogenic right ventricular dysplasia/cardiomyopathy: arrhythmia-free survival after endo-epicardial substrate based mapping and ablation.
        Circ Arrhythm Electrophysiol. 2011; 4: 478-485
        • Vergara P.
        • Trevisi N.
        • Ricco A.
        • et al.
        Late potentials abolition as an additional technique for reduction of arrhythmia recurrence in scar related ventricular tachycardia ablation.
        J Cardiovasc Electrophysiol. 2012; 23: 621-627
        • Arenal Á.
        • Hernández J.
        • Calvo D.
        • et al.
        Safety, long-term results, and predictors of recurrence after complete endocardial ventricular tachycardia substrate ablation in patients with previous myocardial infarction.
        Am J Cardiol. 2013; 111: 499-505
        • Jaïs P.
        • Maury P.
        • Khairy P.
        • et al.
        Elimination of local abnormal ventricular activities: a new end point for substrate modification in patients with scar-related ventricular tachycardia.
        Circulation. 2012; 125: 2184-2196
        • Komatsu Y.
        • Daly M.
        • Sacher F.
        • et al.
        Endocardial ablation to eliminate epicardial arrhythmia substrate in scar-related ventricular tachycardia.
        J Am Coll Cardiol. 2014; 63: 1416-1426
        • Komatsu Y.
        • Maury P.
        • Sacher F.
        • et al.
        Impact of substrate-based ablation of ventricular tachycardia on cardiac mortality in patients with implantable cardioverter-defibrillators.
        J Cardiovasc Electrophysiol. 2015; 26: 1230-1238
        • Wolf M.
        • Sacher F.
        • Cochet H.
        • et al.
        Long-term outcome of substrate modification in ablation of post-myocardial infarction ventricular tachycardia.
        Circ Arrhythm Electrophysiol. 2018; 11: e005635
        • Di Biase L.
        • Burkhardt J.D.
        • Lakkireddy D.
        • et al.
        Ablation of stable VTs versus substrate ablation in ischemic cardiomyopathy: the VISTA randomized multicenter trial.
        J Am Coll Cardiol. 2015; 66: 2872-2882
        • Gökoğlan Y.
        • Mohanty S.
        • Gianni C.
        • et al.
        Scar homogenization versus limited-substrate ablation in patients with nonischemic cardiomyopathy and ventricular tachycardia.
        J Am Coll Cardiol. 2016; 68: 1990-1998
        • Mohanty S.
        • Trivedi C.
        • Di Biase L.
        • et al.
        Endocardial scar-homogenization with vs without epicardial ablation in VT patients with ischemic cardiomyopathy.
        JACC Clin Electrophysiol. 2022; 8: 453-461
        • Berruezo A.
        • Fernández-Armenta J.
        • Mont L.
        • et al.
        Combined endocardial and epicardial catheter ablation in arrhythmogenic right ventricular dysplasia incorporating scar dechanneling technique.
        Circ Arrhythm Electrophysiol. 2012; 5: 111-121
        • Tung R.
        • Mathuria N.S.
        • Nagel R.
        • et al.
        Impact of local ablation on interconnected channels within ventricular scar: mechanistic implications for substrate modification.
        Circ Arrhythm Electrophysiol. 2013; 6: 1131-1138
        • Berruezo A.
        • Fernández-Armenta J.
        • Andreu D.
        • et al.
        Scar dechanneling: new method for scar-related left ventricular tachycardia substrate ablation.
        Circ Arrhythm Electrophysiol. 2015; 8: 326-336
        • Fernández-Armenta J.
        • Penela D.
        • Acosta J.
        • et al.
        Substrate modification or ventricular tachycardia induction, mapping, and ablation as the first step? A randomized study.
        Heart Rhythm. 2016; 13: 1589-1595
        • Andreu D.
        • Penela D.
        • Acosta J.
        • et al.
        Cardiac magnetic resonance-aided scar dechanneling: Influence on acute and long-term outcomes.
        Heart Rhythm. 2017; 14: 1121-1128
        • Tzou W.S.
        • Frankel D.S.
        • Hegeman T.
        • et al.
        Core isolation of critical arrhythmia elements for treatment of multiple scar-based ventricular tachycardias.
        Circ Arrhythm Electrophysiol. 2015; 8: 353-361
        • Ghannam M.
        • Siontis K.C.
        • Kim H.M.
        • et al.
        Stepwise approach for ventricular tachycardia ablation in patients with predominantly intramural scar.
        JACC Clin Electrophysiol. 2020; 6: 448-460
        • Kitamura T.
        • Martin C.A.
        • Vlachos K.
        • et al.
        Substrate mapping and ablation for ventricular tachycardia in patients with structural heart disease: How to identify ventricular tachycardia substrate.
        J Innov Card Rhythm Manag. 2019; 10: 3565-3580
        • Josephson M.E.
        • Anter E.
        Substrate mapping for ventricular tachycardia: assumptions and misconceptions.
        JACC Clin Electrophysiol. 2015; 1: 341-352
        • Anter E.
        Limitations and Pitfalls of substrate mapping for ventricular tachycardia.
        JACC Clin Electrophysiol. 2021; 7: 542-560
        • Sacher F.
        • Lim H.S.
        • Derval N.
        • et al.
        Substrate mapping and ablation for ventricular tachycardia: the LAVA approach.
        J Cardiovasc Electrophysiol. 2015; 26: 464-471
        • Santangeli P.
        • Marchlinski F.E.
        Substrate mapping for unstable ventricular tachycardia.
        Heart Rhythm. 2016; 13: 569-583
        • Cassidy D.M.
        • Vassallo J.A.
        • Miller J.M.
        • et al.
        Endocardial catheter mapping in patients in sinus rhythm: relationship to underlying heart disease and ventricular arrhythmias.
        Circulation. 1986; 73: 645-652
        • Frontera A.
        • Melillo F.
        • Baldetti L.
        • et al.
        High-density characterization of the ventricular electrical substrate during sinus rhythm in post-myocardial infarction patients.
        JACC Clin Electrophysiol. 2020; 6: 799-811
        • Anter E.
        • Kleber A.G.
        • Rottmann M.
        • et al.
        Infarct-related ventricular tachycardia: Redefining the electrophysiological substrate of the isthmus during sinus rhythm.
        JACC Clin Electrophysiol. 2018; 4: 1033-1048
        • Tung R.
        Substrate mapping in ventricular arrhythmias.
        Card Electrophysiol Clin. 2019; 11: 657-663
        • Jiang R.
        • Beaser A.D.
        • Aziz Z.
        • et al.
        High-density Grid catheter for detailed mapping of sinus rhythm and scar-related ventricular tachycardia: comparison with a linear Duodecapolar catheter.
        JACC Clin Electrophysiol. 2020; 6: 311-323
        • Cheung J.W.
        Targeting abnormal electrograms for substrate-based ablation of ventricular tachycardia: can We ablate Smarter?.
        JACC Clin Electrophysiol. 2020; 6: 812-814
        • Irie T.
        • Yu R.
        • Bradfield J.S.
        • et al.
        Relationship between sinus rhythm late activation zones and critical sites for scar-related ventricular tachycardia: systematic analysis of isochronal late activation mapping.
        Circ Arrhythm Electrophysiol. 2015; 8: 390-399
        • Aziz Z.
        • Tung R.
        Novel mapping strategies for ventricular tachycardia ablation.
        Curr Treat Options Cardiovasc Med. 2018; 20: 34
        • Aziz Z.
        • Shatz D.
        • Raiman M.
        • et al.
        Targeted ablation of ventricular tachycardia guided by Wavefront Discontinuities during sinus rhythm: a new functional substrate mapping strategy.
        Circulation. 2019; 140: 1383-1397
        • Jackson N.
        • Gizurarson S.
        • Viswanathan K.
        • et al.
        Decrement evoked potential mapping: Basis of a mechanistic strategy for ventricular tachycardia ablation.
        Circ Arrhythm Electrophysiol. 2015; 8: 1433-1442
        • Bhaskaran A.
        • Fitzgerald J.
        • Jackson N.
        • et al.
        Decrement evoked potential mapping to guide ventricular tachycardia ablation: Elucidating the functional substrate.
        Arrhythm Electrophysiol Rev. 2020; 9: 211-218
        • Porta-Sánchez A.
        • Jackson N.
        • Lukac P.
        • et al.
        Multicenter study of ischemic ventricular tachycardia ablation with decrement-evoked potential (DEEP) mapping with Extra stimulus.
        JACC Clin Electrophysiol. 2018; 4: 307-315
        • Srinivasan N.T.
        • Garcia J.
        • Schilling R.J.
        • et al.
        Multicenter study of Dynamic high-density functional substrate mapping improves identification of substrate targets for ischemic ventricular tachycardia ablation.
        JACC Clin Electrophysiol. 2020; 6: 1783-1793
        • Aryana A.
        • d’Avila A.
        Contact force during VT ablation: vector orientation is key.
        Circ Arrhythm Electrophysiol. 2014; 7: 1009-1010
        • Jesel L.
        • Sacher F.
        • Komatsu Y.
        • et al.
        Characterization of contact force during endocardial and epicardial ventricular mapping.
        Circ Arrhythm Electrophysiol. 2014; 7: 1168-1173
        • Ariyarathna N.
        • Kumar S.
        • Thomas S.P.
        • et al.
        Role of contact force sensing in catheter ablation of cardiac arrhythmias: evolution or history repeating itself?.
        JACC Clin Electrophysiol. 2018; 4: 707-723
        • Elbatran A.I.
        • Li A.
        • Gallagher M.M.
        • et al.
        Contact force sensing in ablation of ventricular arrhythmias using a 56-hole open-irrigation catheter: a propensity-matched analysis.
        J Interv Card Electrophysiol. 2021; 60: 543-553
        • Leshem E.
        • Zilberman I.
        • Barkagan M.
        • et al.
        Temperature-controlled radiofrequency ablation using irrigated catheters: maximizing ventricular lesion Dimensions while reducing Steam-Pop formation.
        JACC Clin Electrophysiol. 2020; 6: 83-93
        • Nguyen D.T.
        • Olson M.
        • Zheng L.
        • et al.
        Effect of irrigant characteristics on lesion formation after radiofrequency energy delivery using ablation catheters with actively Cooled Tips.
        J Cardiovasc Electrophysiol. 2015; 26: 792-798
        • Nguyen D.T.
        • Tzou W.S.
        • Sandhu A.
        • et al.
        Prospective multicenter experience with Cooled radiofrequency ablation using high impedance irrigant to target deep myocardial substrate refractory to standard ablation.
        JACC Clin Electrophysiol. 2018; 4: 1176-1185
        • Yamada T.
        • Maddox W.R.
        • McElderry H.T.
        • et al.
        Radiofrequency catheter ablation of idiopathic ventricular arrhythmias originating from intramural foci in the left ventricular outflow tract: efficacy of sequential versus simultaneous unipolar catheter ablation.
        Circ Arrhythm Electrophysiol. 2015; 8: 344-352
        • Yang J.
        • Liang J.
        • Shirai Y.
        • et al.
        Outcomes of simultaneous unipolar radiofrequency catheter ablation for intramural septal ventricular tachycardia in nonischemic cardiomyopathy.
        Heart Rhythm. 2019; 16: 863-870
        • Chang R.J.
        • Stevenson W.G.
        • Saxon L.A.
        • et al.
        Increasing catheter ablation lesion size by simultaneous application of radiofrequency current to two adjacent sites.
        Am Heart J. 1993; 125: 1276-1284
        • Sivagangabalan G.
        • Barry M.A.
        • Huang K.
        • et al.
        Bipolar ablation of the interventricular septum is more efficient at creating a transmural line than sequential unipolar ablation.
        Pacing Clin Electrophysiol. 2010; 33: 16-26
        • Koruth J.S.
        • Dukkipati S.
        • Miller M.A.
        • et al.
        Bipolar irrigated radiofrequency ablation: a therapeutic option for refractory intramural atrial and ventricular tachycardia circuits.
        Heart Rhythm. 2012; 9: 1932-1941
        • Neira V.
        • Santangeli P.
        • Futyma P.
        • et al.
        Ablation strategies for intramural ventricular arrhythmias.
        Heart Rhythm. 2020; 17: 1176-1184
        • Aryana A.
        • d’Avila A.
        • Heist E.K.
        • et al.
        Remote magnetic navigation to guide endocardial and epicardial catheter mapping of scar-related ventricular tachycardia.
        Circulation. 2007; 115: 1191-1200
        • Bauernfeind T.
        • Akca F.
        • Schwagten B.
        • et al.
        The magnetic navigation system allows safety and high efficacy for ablation of arrhythmias.
        Europace. 2011; 13: 1015-1021
        • Aagaard P.
        • Natale A.
        • Briceno D.
        • et al.
        Remote magnetic navigation: a focus on catheter ablation of ventricular arrhythmias.
        J Cardiovasc Electrophysiol. 2016; 27: S38-S44
        • Xie Y.
        • Liu A.
        • Jin Q.
        • et al.
        Novel strategy of remote magnetic navigation-guided ablation for ventricular arrhythmias from right ventricle outflow tract.
        Sci Rep. 2020; 10: 17839
        • Bennett R.G.
        • Campbell T.
        • Sood A.
        • et al.
        Remote magnetic navigation compared to contemporary manual techniques for the catheter ablation of ventricular arrhythmias in structural heart disease.
        Heliyon. 2021; 7: e08538
        • Žižek D.
        • Antolič B.
        • Prolič Kalinšek T.
        • et al.
        Intracardiac echocardiography-guided transseptal puncture for fluoroless catheter ablation of left-sided tachycardias.
        J Interv Card Electrophysiol. 2021; 61: 595-602
        • Packer D.L.
        • Johnson S.B.
        • Kolasa M.W.
        • et al.
        New generation of electro-anatomic mapping: full intracardiac ultrasound image integration.
        Europace. 2008; 10: iii35-iii41
        • Rossillo A.
        • Indiani S.
        • Bonso A.
        • et al.
        Novel ICE-guided registration strategy for integration of electroanatomical mapping with three-dimensional CT/MR images to guide catheter ablation of atrial fibrillation.
        J Cardiovasc Electrophysiol. 2009; 20: 374-378
        • Bunch T.J.
        • Weiss J.P.
        • Crandall B.G.
        • et al.
        Image integration using intracardiac ultrasound and 3D reconstruction for scar mapping and ablation of ventricular tachycardia.
        J Cardiovasc Electrophysiol. 2010; 21: 678-684
        • Hijazi Z.M.
        • Shivkumar K.
        • Sahn D.J.
        Intracardiac echocardiography during interventional and electrophysiological cardiac catheterization.
        Circulation. 2009; 119: 587-596
        • Qian P.C.
        • Tedrow U.B.
        Intracardiac echocardiography to guide catheter ablation of ventricular arrhythmias in ischemic cardiomyopathy.
        Card Electrophysiol Clin. 2021; 13: 285-292
        • Hanson M.
        • Enriquez A.
        Intracardiac echocardiography to guide catheter ablation of idiopathic ventricular arrythmias.
        Card Electrophysiol Clin. 2021; 13: 325-335
        • Barrett C.
        • Tzou W.S.
        Utility of intracardiac echocardiography for guiding ablation of ventricular tachycardia in nonischemic cardiomyopathy.
        Card Electrophysiol Clin. 2021; 13: 337-343
        • Campbell T.
        • Haqqani H.
        • Kumar S.
        Intracardiac echocardiography to guide mapping and ablation of arrhythmias in patients with Congenital heart disease.
        Card Electrophysiol Clin. 2021; 13: 345-356
        • Field M.E.
        • Gold M.R.
        • Reynolds M.R.
        • et al.
        Real-world outcomes of ventricular tachycardia catheter ablation with versus without intracardiac echocardiography.
        J Cardiovasc Electrophysiol. 2020; 31: 417-422
        • Field M.E.
        • Goldstein L.
        • Yu Lee S.H.
        • et al.
        Intracardiac echocardiography use and outcomes after catheter ablation of ventricular tachycardia.
        J Comp Eff Res. 2020; 9: 375-385
        • Kitamura T.
        • Nakajima M.
        • Kawamura I.
        • et al.
        Safety and effectiveness of intracardiac echocardiography in ventricular tachycardia ablation: a nationwide observational study.
        Heart Vessels. 2021; 36: 1009-1015
        • Peichl P.
        • Wichterle D.
        • Pavlu L.
        • et al.
        Complications of catheter ablation of ventricular tachycardia: a single-center experience.
        Circ Arrhythm Electrophysiol. 2014; 7: 684-690
        • Palaniswamy C.
        • Kolte D.
        • Harikrishnan P.
        • et al.
        Catheter ablation of postinfarction ventricular tachycardia: ten-year trends in utilization, in-hospital complications, and in-hospital mortality in the United States.
        Heart Rhythm. 2014; 11: 2056-2063
        • Ding W.Y.
        • Pearman C.M.
        • Bonnett L.
        • et al.
        Complication rates following ventricular tachycardia ablation in ischaemic and non-ischaemic cardiomyopathies: a systematic review.
        J Interv Card Electrophysiol. 2022; 63: 59-67
        • Santangeli P.
        • Frankel D.S.
        • Tung R.
        • et al.
        Early mortality after catheter ablation of ventricular tachycardia in patients with structural heart disease.
        J Am Coll Cardiol. 2017; 69: 2105-2115
        • Mathew S.
        • Fink T.
        • Feickert S.
        • et al.
        Complications and mortality after catheter ablation of ventricular arrhythmias: risk in VT ablation (RIVA) score.
        Clin Res Cardiol. 2022; 111: 530-540
        • Natale A.
        • Mohanty S.
        • Liu P.Y.
        • et al.
        Venous vascular closure system versus manual Compression following multiple access electrophysiology procedures: the AMBULATE trial.
        JACC Clin Electrophysiol. 2020; 6: 111-124
        • Ghannam M.
        • Chugh A.
        • Dillon P.
        • et al.
        Protamine to expedite vascular hemostasis after catheter ablation of atrial fibrillation: a randomized controlled trial.
        Heart Rhythm. 2018; 15: 1642-1647
        • Aryana A.
        • Tung R.
        • d’Avila A.
        Percutaneous epicardial approach to catheter ablation of cardiac arrhythmias.
        JACC Clin Electrophysiol. 2020; 6: 1-20
        • Siontis K.C.
        • Jamé S.
        • Sharaf Dabbagh G.
        • et al.
        Thromboembolic prophylaxis protocol with warfarin after radiofrequency catheter ablation of infarct-related ventricular tachycardia.
        J Cardiovasc Electrophysiol. 2018; 29: 584-590
        • Lakkireddy D.
        • Shenthar J.
        • Garg J.
        • et al.
        Safety/efficacy of DOAC versus aspirin for reduction of risk of Cerebrovascular events following VT ablation.
        JACC Clin Electrophysiol. 2021; 7: 1493-1501
        • Muser D.
        • Hayashi T.
        • Castro S.A.
        • et al.
        Noninvasive programmed ventricular stimulation-guided management following ventricular tachycardia ablation.
        JACC Clin Electrophysiol. 2019; 5: 719-727
        • Arora S.
        • Atreya A.R.
        • Birati E.Y.
        • et al.
        Temporary mechanical circulatory support as a bridge to heart transplant or durable left ventricular assist device.
        Interv Cardiol Clin. 2021; 10: 235-249
        • Vallabhajosyula S.
        • Vallabhajosyula S.
        • Vaidya V.R.
        • et al.
        Venoarterial Extracorporeal membrane oxygenation support for ventricular tachycardia ablation: a systematic review.
        ASAIO J. 2020; 66: 980-985
        • Miller M.A.
        • Dukkipati S.R.
        • Chinitz J.S.
        • et al.
        Percutaneous hemodynamic support with Impella 2.5 during scar-related ventricular tachycardia ablation (PERMIT 1).
        Circ Arrhythm Electrophysiol. 2013; 6: 151-159
        • Aryana A.
        • Gearoid O’Neill P.
        • Gregory D.
        • et al.
        Procedural and clinical outcomes after catheter ablation of unstable ventricular tachycardia supported by a percutaneous left ventricular assist device.
        Heart Rhythm. 2014; 11: 1122-1130
        • Turagam M.K.
        • Vuddanda V.
        • Atkins D.
        • et al.
        Hemodynamic support in ventricular tachycardia ablation: an International VT ablation center Collaborative group study.
        JACC Clin Electrophysiol. 2017; 3: 1534-1543
        • Aryana A.
        • d’Avila A.
        • Cool C.L.
        • et al.
        Outcomes of catheter ablation of ventricular tachycardia with mechanical hemodynamic support: an analysis of the Medicare database.
        J Cardiovasc Electrophysiol. 2017; 28: 1295-1302
        • Mathuria N.
        • Wu G.
        • Rojas-Delgado F.
        • et al.
        Outcomes of pre-emptive and rescue use of percutaneous left ventricular assist device in patients with structural heart disease undergoing catheter ablation of ventricular tachycardia.
        J Interv Card Electrophysiol. 2017; 48: 27-34
        • Muser D.
        • Castro S.A.
        • Liang J.J.
        • et al.
        Identifying risk and management of acute Haemodynamic decompensation during catheter ablation of ventricular tachycardia.
        Arrhythm Electrophysiol Rev. 2018; 7: 282-287
        • Grimaldi M.
        • Marino M.M.
        • Vitulano N.
        • et al.
        Cardiopulmonary support during catheter ablation of ventricular arrhythmias with hemodynamic instability: the role of inducibility.
        Front Cardiovasc Med. 2021; 8: 747858
        • Muser D.
        • Liang J.J.
        • Castro S.A.
        • et al.
        Outcomes with prophylactic use of percutaneous left ventricular assist devices in high-risk patients undergoing catheter ablation of scar-related ventricular tachycardia: a propensity-score matched analysis.
        Heart Rhythm. 2018; 15: 1500-1506
        • Santangeli P.
        • Muser D.
        • Zado E.S.
        • et al.
        Acute hemodynamic decompensation during catheter ablation of scar-related ventricular tachycardia: incidence, predictors, and impact on mortality.
        Circ Arrhythm Electrophysiol. 2015; 8: 68-75
        • Miller L.
        • Birks E.
        • Guglin M.
        • et al.
        Use of ventricular assist devices and heart transplantation for advanced heart failure.
        Circ Res. 2019; 124: 1658-1678
        • Galand V.
        • Flécher E.
        • Auffret V.
        • et al.
        Early ventricular arrhythmias after LVAD implantation is the Strongest predictor of 30-day post-Operative mortality.
        JACC Clin Electrophysiol. 2019; 5: 944-954
        • Anderson R.D.
        • Lee G.
        • Virk S.
        • et al.
        Catheter ablation of ventricular tachycardia in patients with a ventricular assist device: a systematic review of procedural characteristics and outcomes.
        JACC Clin Electrophysiol. 2019; 5: 39-51
        • Sacher F.
        • Reichlin T.
        • Zado E.S.
        • et al.
        Characteristics of ventricular tachycardia ablation in patients with continuous flow left ventricular assist devices.
        Circ Arrhythm Electrophysiol. 2015; 8: 592-597
        • Tilz R.R.
        • Lin T.
        • Eckardt L.
        • et al.
        Ablation outcomes and predictors of mortality following catheter ablation for ventricular tachycardia: data from the German multicenter ablation Registry.
        J Am Heart Assoc. 2018; 7: e007045
        • Pothineni N.V.
        • Kancharla K.
        • Katoor A.J.
        • et al.
        Coronary artery injury related to catheter ablation of cardiac arrhythmias: a systematic review.
        J Cardiovasc Electrophysiol. 2019; 30: 92-101
        • Castaño A.
        • Crawford T.
        • Yamazaki M.
        • et al.
        Coronary artery pathophysiology after radiofrequency catheter ablation: review and perspectives.
        Heart Rhythm. 2011; 8: 1975-1980
        • Kuck K.-H.
        • Schaumann A.
        • Eckardt L.
        • et al.
        Catheter ablation of stable ventricular tachycardia before defibrillator implantation in patients with coronary heart disease (VTACH): a multicentre randomised controlled trial.
        Lancet. 2010; 375: 31-40
        • Buch E.
        • Vaseghi M.
        • Cesario D.A.
        • et al.
        A novel method for preventing phrenic nerve injury during catheter ablation.
        Heart Rhythm. 2007; 4: 95-98
        • Muser D.
        • Santangeli P.
        • Castro S.A.
        • et al.
        Long-term outcome after catheter ablation of ventricular tachycardia in patients with nonischemic Dilated cardiomyopathy.
        Circ Arrhythm Electrophysiol. 2016; 9: e004328